PROMINENT PRE-ENGINEERED SYSTEM

P/N: 7746432-0-701

2 COUPON RACK 1” PVC OPTION 1 WITH DOLE VALVE

PIPING COMPONENTS

ASAHI PVC/EPDM OMNI BALL VALVES
SPEARS PVC/EPDM LAB BALL VALVES
HAYWARD CLEAR PVC/VITON Y-STRAINER
METAL SAMPLES PVC/NYLON COUPN HOLDER
SPEARS SCH.80 PVC PIPING & FITTINGS
1” BRASS 5 GPM DOLE VALVE
Omni® Ball Valve

Standard Features (Sizes 3/8” – 3”)
- Blocks in two directions
- Rugged structure
- Unibody construction
- Compact, low profile, short face-to-face dimensions
- PTFE seat backed by EPDM for low stem torque
- Rated for full vacuum service

Options
- FKM backing cushions and O-ring
- Electrically actuated

Pressure vs. Temperature (PSI, WATER, NON-SHOCK)

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>PVC</th>
<th>CPVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCHES</td>
<td>30° F</td>
<td>120° F</td>
</tr>
<tr>
<td>3/8-2</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Sample Specification
All Omni® ball valves size 3/8”-3” shall be of one-piece compact design non-union type. All O-rings shall be EPDM or FKM with PTFE seats. Seats must have elastomeric backing cushions of the same material as the valve seals. PVC conforming to ASTM D1784 Cell Classification 12454-A, and CPVC conforming to ASTM D1784 Cell Classification 23567-A. Valve shall be rated 150 psi at 70°F, as manufactured by Asahi-America, Inc.

Dimensions (Sizes 3/8” – 3”)

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>SOCKET</th>
<th>THREAD</th>
<th>INCHES</th>
<th>d1</th>
<th>d2</th>
<th>l</th>
<th>L</th>
<th>D</th>
<th>D1</th>
<th>h</th>
<th>INCHES</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>13</td>
<td>0.687</td>
<td>0.671</td>
<td>0.59</td>
<td>3.35</td>
<td>3/8-18 NPT</td>
<td>0.59</td>
<td>3.35</td>
<td>0.51</td>
<td>2.36</td>
<td>1.22</td>
<td>1.38</td>
</tr>
<tr>
<td>1/2</td>
<td>15</td>
<td>0.848</td>
<td>0.836</td>
<td>0.69</td>
<td>3.82</td>
<td>1/2-14 NPT</td>
<td>0.59</td>
<td>3.82</td>
<td>0.59</td>
<td>2.76</td>
<td>1.22</td>
<td>1.38</td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
<td>1.058</td>
<td>1.046</td>
<td>0.72</td>
<td>4.02</td>
<td>3/4-14 NPT</td>
<td>0.67</td>
<td>4.06</td>
<td>0.79</td>
<td>3.15</td>
<td>1.46</td>
<td>2.17</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1.325</td>
<td>1.310</td>
<td>0.87</td>
<td>4.49</td>
<td>1-11 1/2 NPT</td>
<td>0.79</td>
<td>4.45</td>
<td>0.98</td>
<td>3.15</td>
<td>1.77</td>
<td>2.36</td>
</tr>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>1.670</td>
<td>1.655</td>
<td>0.94</td>
<td>5.00</td>
<td>1 1/4-11 1/2 NPT</td>
<td>0.87</td>
<td>5.00</td>
<td>1.22</td>
<td>3.74</td>
<td>2.13</td>
<td>2.76</td>
</tr>
<tr>
<td>1 1/2</td>
<td>40</td>
<td>1.912</td>
<td>1.894</td>
<td>1.09</td>
<td>5.98</td>
<td>1 1/2-11 1/2 NPT</td>
<td>0.98</td>
<td>5.94</td>
<td>1.38</td>
<td>4.33</td>
<td>2.50</td>
<td>2.99</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>2.387</td>
<td>2.369</td>
<td>1.16</td>
<td>6.93</td>
<td>2-11 1/2 NPT</td>
<td>1.10</td>
<td>6.97</td>
<td>1.77</td>
<td>4.33</td>
<td>3.01</td>
<td>3.31</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>3.516</td>
<td>3.492</td>
<td>1.87</td>
<td>9.29</td>
<td>3-8 NPT</td>
<td>1.17</td>
<td>9.29</td>
<td>2.70</td>
<td>7.87</td>
<td>4.25</td>
<td>4.88</td>
</tr>
</tbody>
</table>

Weight (LBS.) Cv Values

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>SOCKET</th>
<th>THREAD</th>
<th>INCHES</th>
<th>d1</th>
<th>d2</th>
<th>l</th>
<th>L</th>
<th>d</th>
<th>A</th>
<th>D</th>
<th>D1</th>
<th>h</th>
<th>INCHES</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>13</td>
<td>0.687</td>
<td>0.671</td>
<td>0.59</td>
<td>3.35</td>
<td>3/8-18 NPT</td>
<td>0.59</td>
<td>3.35</td>
<td>0.51</td>
<td>2.36</td>
<td>1.22</td>
<td>1.38</td>
<td>1.65</td>
<td>3/8</td>
</tr>
<tr>
<td>1/2</td>
<td>15</td>
<td>0.848</td>
<td>0.836</td>
<td>0.69</td>
<td>3.82</td>
<td>1/2-14 NPT</td>
<td>0.59</td>
<td>3.82</td>
<td>0.59</td>
<td>2.76</td>
<td>1.22</td>
<td>1.38</td>
<td>1.73</td>
<td>1/2</td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
<td>1.058</td>
<td>1.046</td>
<td>0.72</td>
<td>4.02</td>
<td>3/4-14 NPT</td>
<td>0.67</td>
<td>4.06</td>
<td>0.79</td>
<td>3.15</td>
<td>1.46</td>
<td>2.17</td>
<td>2.17</td>
<td>3/4</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1.325</td>
<td>1.310</td>
<td>0.87</td>
<td>4.49</td>
<td>1-11 1/2 NPT</td>
<td>0.79</td>
<td>4.45</td>
<td>0.98</td>
<td>3.15</td>
<td>1.77</td>
<td>2.36</td>
<td>2.36</td>
<td>1</td>
</tr>
</tbody>
</table>

*Used for CPVC body, threaded end, 1/2"-1"
Compact Ball Valves
"OMNI Ball Valves"

User’s Manual

Contents

1. General operating instructions .. 1
2. General care & storage instructions 1
3. Names of parts .. 2
4. Comparison between operating temperature and pressure 2
5. Installation procedure ... 3
6. Operating procedure .. 4
7. Inspection items .. 5
8. Troubleshooting .. 5
9. Residual and Waste Materials Disposal 5
10. Inquires ... 5
(1) General operating instructions

- Operate the valve within the pressure Vs temperature range.
 (The valve can be damaged by operating beyond the allowable range.)

- Select a valve material that is compatible with the media, refer to “CHEMICAL RESISTANCE ON ASAHI AV VALVE”. (Some chemicals may damage incompatible valve materials.)

- Do not use the valve to fluid containing slurry. (The valve will not operate properly.)

- Do not use the valve on condition that fluid has crystallized.
 (The valve will not operate properly.)

- Do not step on the valve or apply excessive weight on valve. (It can be damaged.)

- Do not exert excessive force in closing the valve.

- Make sure to consult a waste treatment dealer to dispose of the valves.
 (Poisonous gas is generated when the valve is burned improperly.)

- Allow sufficient space for maintenance and inspection.

- Keep the valve away from excessive heat or fire. (It can be deformed, or destroyed.)

- The valve is not designed to bear any kind of external load. Never stand on or place anything heavy on the valve at anytime.

- Certain liquid such as H₂O₂, NaClO, etc may be prone to vaporization which may cause irregular pressure increases, which may destroy the valve.

(2) General instructions for transportation, unpacking and storage

- Keep the valve packed in the carton or box as delivered until installation.

- Keep the valve away from any coal tar, creosote (antiseptic for wood), termite insecticide, vermicides, and paint. (This could cause swelling damage the valve.)

- Do not impact or drop the valve. (It can be damaged.)

- Avoid scratching the valve with any sharp object.
(3) Names or parts

- Body
- Handwheel
- End connector

(4) Comparison between working temperature and pressure

Caution

Do not operate the valve beyond the range of working temperature and pressure.
(The valve can be damaged.)
(5) Installation procedure

Threaded end

- **Necessary item**
 - Sealing tape (A non-sealing tape can cause leakage.)
 - Strap wrench (Don’t use a pipe wrench.)
 - Spanner wrench

Caution

Make sure that the threaded connections are plastic x plastic. (Metallic thread can be damaged)

Procedure

1) Wind a sealing tape around the external thread of the joint, leaving the end (about 3mm) free.
2) Tighten the external thread of the joint and the end connector lightly by hand.
3) Using a spanner and a strap wrench, screw in the end connector by turning 180°-360° carefully without damaging it.

Caution

Avoid excessive tightening. (The valve can be damaged)

Socket end

- **Necessary item**
 - Adhesive for rigid polyvinyl chloride pipe (PVC)
 - Adhesive for heat-resistant polyvinyl chloride pipe (C – PVC)

Caution

Don’t install a socket type valve where the atmospheric temperature is 5° or lower. (The valve can be damaged)

Procedure

1) Clean the hub part of the end connector by wiping with waste cloth.
2) Apply adhesive evenly to the hub part of the end connector and the pipe spigot.

Caution

Don’t apply more adhesive than necessary. (The valve can be destroyed due to solvent cracking)

Adhesive quantity (guideline)

<table>
<thead>
<tr>
<th>Nom. Size</th>
<th>13mm (3/8")</th>
<th>15mm (1/2")</th>
<th>20mm (3/4")</th>
<th>25mm (1")</th>
<th>30mm (1 1/4")</th>
<th>40mm (1 1/2")</th>
<th>50mm (2")</th>
<th>80mm (3")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity(g)</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>2.0</td>
<td>2.4</td>
<td>3.5</td>
<td>4.8</td>
<td>9.0</td>
</tr>
</tbody>
</table>
3) After applying adhesive, insert the pipe quickly to the end connector and leave it alone for at least 60 seconds.
4) Wipe away overflowing adhesive.

(6) Operating procedure

⚠️ Caution
Avoid excessive tightening. (The valve can be damaged.)

- Turn the handle gently to open or close.
 (Turn the handle clockwise to close and counter clockwise to open.)

Fully closed ⋅⋅⋅⋅ The position of the handle should be perpendicular to the pipe.

Fully opened ⋅⋅⋅⋅ The position of the handle should be parallel to the pipe.
(7) Inspection items

Inspect the following items.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Existence of scratches, cracks, deformation, and discoloring.</td>
</tr>
<tr>
<td>(2)</td>
<td>Existence of leakage from the valve to the outside.</td>
</tr>
<tr>
<td>(3)</td>
<td>Existence of leakage when the valve is opened fully at right or left.</td>
</tr>
</tbody>
</table>

(8) Trouble shooting

The valve is not able disassemble.
Please replace the valve to new complete another valve, if the trouble may be occurred in parts of the valve.

(9) Discarding remaining or waste materials

⚠️ Caution

In discarding remaining or waste materials, be sure to ask a waste service company.
(Poisonous gas is generated.)
(10) Inquires

ASAHI ORGANIC CHEMICALS INDUSTRY CO., LTD.

Nobeoka Head Office : 2-5955, Nakanose-Cho, Nobeoka-City, Miyazaki-Pref., Japan.
 Tel : (81) 982-35-0880 Fax : (81) 982-35-9350

Tokyo Head Office : (Furukawachiyoda Bldg.) 15-9, Uchikanda 2-Chome, Chiyoda-Ku, Tokyo, Japan.
 Tel : (81) 3-3254-8177 Fax : (81) 3-3254-3474

Singapore Branch Office : 16 Raffles Quay, #40-03 Hong Leong Building, Singapore 048581.
 Tel : (65) 220-4022 Fax : (65) 324-6151

Europe Representative Office : Kaiser-Friedrich-Promenade 61 D-61348 Bad Homburg v. d. H. Germany.
 Tel : (49) 6172-9175-0 Fax : (49) 6172-9175-25

Shanghai Branch Office : Room 1301-P Shanghai Kerry Center, 1515 Nanjing Xi Road, Shanghai China
 Tel : (21) 5298-6900 Fax : (21) 5298-6556

ASAHI /AMERICA Inc. : 35 Green Street P.O.Box 653 , Malden, Massachusetts 02148 U.S.A.
 Tel : (1) 781-321-5409 Fax : (1) 781-321-4421

Distributor
Compact Ball Valves

ASAHI AV VALVES

Information in this manual is subject to change without notice.

2003. 3
All thermoplastic valves shall be sealed unit Lab type constructed from PVC Type I, ASTM D 1784 Cell Classification 12454 or CPVC Type IV, ASTM D 1784 Cell Classification 23447. All O-rings shall be EPDM or Viton®. All valves shall have double stop Polypropylene handle. All 1/4" valves shall have optional field installable male thread and tubing end connector adapters. All valves shall be certified by NSF International for use in potable water service. All valves shall be pressure rated at 150 psi for water at 73°F, as manufactured by Spears® Manufacturing Company.

Features – PVC, CPVC
This versatile quarter-turn shutoff valve is ideally suited for a variety of laboratory, system monitoring and OEM applications. Available in IPS sizes 1/4" - 3/8" with socket or threaded end connectors, plus 1/4" threaded Valve & Adapter Kit to provide multiple connection options.

- Chemical & Corrosion Resistant PVC or CPVC Construction
- Maintenance-Free Sealed Unit
- Individual Valve or Multi-functional Valve & Adapter Kit
- Schedule 80 Full-Bore Design
- High Impact Polypropylene Handle
- EPDM or Viton® O-rings
- PTFE Floating Seat Design
- Sizes 1/4" - 3/8" Pressure Rated to 150 psi @ 73°F
- NSF Certified for Potable Water use
- Assembled with Silicone-Free, Water Soluble Lubricant

Sample Engineering Specification
All thermoplastic valves shall be sealed unit Lab type constructed from PVC Type I, ASTM D 1784 Cell Classification 12454 or CPVC Type IV, ASTM D 1784 Cell Classification 23447. All O-rings shall be EPDM or Viton®. All valves shall have double stop Polypropylene handle. All 1/4" valves shall have optional field installable male thread and tubing end connector adapters. All valves shall be certified by NSF International for use in potable water service. All valves shall be pressure rated at 150 psi for water at 73°F, as manufactured by Spears® Manufacturing Company.

Quick-View Valve Selection Chart

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>O-ring Material</th>
<th>PVC Part Number1</th>
<th>Pressure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>EPDM</td>
<td>1522-002</td>
<td>150 psi Non-Shock Water @ 73°F</td>
</tr>
<tr>
<td></td>
<td>Viton®</td>
<td>1532-002</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>EPDM</td>
<td>1522-003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viton®</td>
<td>1532-003</td>
<td></td>
</tr>
</tbody>
</table>

1. For CPVC Valves, add the letter “C” to part number listed (e.g., 1521-002C)

Valve & Adapter Kit
Kit allows multiple connection options. Adapters use O-ring seals for easy connection to threaded valve. Complete Kit includes:

1 – 1/4" Threaded Valve
2 – 1/4" O-ring Sealed Mpt x Mipt Adapters
2 – 1/4" O-ring Sealed Mpt x Barb Adapters (for 3/8" I.D. tubing)
2: EPDM or Viton® O-rings (AS568A-013 size)
1 – End Connector Wrench

For CPVC Valves, add the letter “C” to part number listed (e.g., 1521-002C)
LAB BALL VALVES

[Diagram of Basic Valve and Valve with Adapter Kit]

Dimensions, Weights & Cv Values

<table>
<thead>
<tr>
<th>Nominal Size</th>
<th>Dimension Reference (inches, ± 1/16)</th>
<th>Approx. Wt. (Lbs.)</th>
<th>Cv2 Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B1</td>
<td>C</td>
</tr>
<tr>
<td>1/4</td>
<td>1-1/16</td>
<td>15/16</td>
<td>2-1/8</td>
</tr>
<tr>
<td>1/4 w/Kit</td>
<td>1-1/16</td>
<td>2-7/16</td>
<td>3-7/8</td>
</tr>
<tr>
<td>3/8</td>
<td>1-5/16</td>
<td>1</td>
<td>2-3/16</td>
</tr>
</tbody>
</table>

1: Valve Lay Length
2: Gallons per minute at 1 psi pressure drop. Values calculated from valve laying length, based on derivative of Hazen-Williams equation with roughness factor of C=150.

Temperature Pressure Rating

<table>
<thead>
<tr>
<th>System Operating Temperature °F (°C)</th>
<th>73 (23)</th>
<th>100 (38)</th>
<th>110 (43)</th>
<th>120 (49)</th>
<th>130 (54)</th>
<th>140 (60)</th>
<th>150 (66)</th>
<th>160 (71)</th>
<th>170 (77)</th>
<th>180 (82)</th>
<th>190 (88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Pressure Rating psi (MPa)</td>
<td>PVC</td>
<td>CPVC</td>
<td>PVC</td>
<td>CPVC</td>
<td>PVC</td>
<td>CPVC</td>
<td>PVC</td>
<td>CPVC</td>
<td>PVC</td>
<td>CPVC</td>
<td>PVC</td>
</tr>
<tr>
<td></td>
<td>150 (.03)</td>
<td>150 (.03)</td>
<td>140 (.97)</td>
<td>140 (.97)</td>
<td>130 (.90)</td>
<td>130 (.90)</td>
<td>120 (.83)</td>
<td>120 (.83)</td>
<td>110 (.76)</td>
<td>110 (.76)</td>
<td>100 (.69)</td>
</tr>
</tbody>
</table>

NOT FOR USE WITH COMPRESSED AIR OR GASES
Y Strainers - Clear PVC

1/2˝ to 2˝

Features
- Clear PVC construction
- Rated to 150 PSI
- FPM Seals
- Standard 1/32˝ Perf Screen
- All-Plastic Construction
- Easy Screen Access
- Can be Used in Horizontal or Vertical Position

Options
- Stainless Steel Strainer Screens

Clear PVC Construction
See how much dirt and debris have been trapped by the strainer screen in the Hayward Clear PVC Y Strainer. The translucent PVC body shows the strainer screen in operation. This helps determine when it needs cleaning based on a visual check of the amount of debris retained by the screen. These Y strainers are available in pipeline sizes up to 2˝ with socket or threaded connections, and are rated at a full 150 PSI.

Economical Protection
Hayward Y Strainers protect piping system components from damage caused by dirt or debris in the process media. They cost less than other types of strainers and are lightweight and very compact. Because they can often be supported by the pipeline alone, they work in applications where other strainers cannot.

Screens for All Applications
Hayward Y Strainers are supplied with a 1/32˝ perforated plastic screen. This screen is ultrasonically welded, not glued, for superior strength. Screens fabricated from type 316 stainless steel are also available in openings from 1/2˝ down to super fine 325 mesh. All screens have an open area at least twice that of the equivalent pipe size cross-sectional area to minimize pressure drop.

Easy Clean Out
All sizes of Hayward Y Strainers feature a heavy-duty hex cap that permits quick and easy removal of the strainer screen when cleanout becomes necessary.

Adaptable Design
Hayward Y Strainers will work equally well in the horizontal or vertical position, simplifying piping system layout.

All Plastic Construction
Hayward Plastic Y Strainers will never rust or corrode – and they will not contaminate sensitive process media.
Technical Information

Dimensions - Inches / Millimeters

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>Weight (lb / kg) Skt / Thd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>3.38 / 86</td>
<td>1.38 / 35</td>
<td>2.25 / 57</td>
<td>1.50 / 38</td>
<td>0.56 / 14</td>
<td>1.00 / 25</td>
<td>2.13 / 54</td>
<td>2.50 / 64</td>
<td>0.25 / .11</td>
</tr>
<tr>
<td>3/4"</td>
<td>4.18 / 106</td>
<td>1.69 / 43</td>
<td>2.88 / 73</td>
<td>2.00 / 51</td>
<td>0.81 / 21</td>
<td>1.25 / 32</td>
<td>2.75 / 70</td>
<td>3.00 / 76</td>
<td>0.63 / .29</td>
</tr>
<tr>
<td>1"</td>
<td>5.19 / 132</td>
<td>2.00 / 51</td>
<td>3.63 / 92</td>
<td>2.16 / 55</td>
<td>1.00 / 25</td>
<td>1.50 / 38</td>
<td>3.30 / 84</td>
<td>3.32 / 84</td>
<td>0.88 / .40</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>6.63 / 168</td>
<td>2.63 / 67</td>
<td>4.50 / 114</td>
<td>2.94 / 75</td>
<td>1.25 / 32</td>
<td>2.00 / 51</td>
<td>4.50 / 114</td>
<td>4.45 / 113</td>
<td>1.75 / .80</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>6.63 / 168</td>
<td>2.63 / 67</td>
<td>4.50 / 114</td>
<td>2.94 / 75</td>
<td>1.56 / 40</td>
<td>2.00 / 51</td>
<td>4.50 / 114</td>
<td>4.45 / 113</td>
<td>1.63 / .74</td>
</tr>
<tr>
<td>2"</td>
<td>7.63 / 194</td>
<td>3.38 / 86</td>
<td>5.38 / 137</td>
<td>3.75 / 95</td>
<td>2.00 / 51</td>
<td>2.38 / 60</td>
<td>5.06 / 129</td>
<td>4.88 / 124</td>
<td>3.00 / 1.4</td>
</tr>
</tbody>
</table>

Cv Factors*

<table>
<thead>
<tr>
<th>Size</th>
<th>Factor</th>
<th>Size</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4"</td>
<td>4.0</td>
<td>1-1/4"</td>
<td>12.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>6.8</td>
<td>1-1/2"</td>
<td>28.0</td>
</tr>
<tr>
<td>1"</td>
<td>9.0</td>
<td>2"</td>
<td>28.0</td>
</tr>
</tbody>
</table>

With 1/32” plastic screen

Pressure Drop Calculations

The pressure drop across the strainer, for water or fluids with a similar viscosity, can be calculated using the formula at the right:

\[\Delta P = \frac{Q^2}{Cv} \]

Where \(\Delta P \) = Pressure Drop
\(Q \) = Flow in GPM
\(Cv \) = Flow Coefficient

Selection Chart

<table>
<thead>
<tr>
<th>Size</th>
<th>Material</th>
<th>End Connection</th>
<th>Seal</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" to 2"</td>
<td>Clear PVC</td>
<td>Thd or Skt</td>
<td>FPM</td>
<td>150 PSI @ 70°F</td>
</tr>
</tbody>
</table>

Strainer Screen Selection

- Y Strainers are furnished with a 1/32” perf plastic screen.
- Stainless steel strainer screens are available in these perfs: 1/32”, 3/64”, 1/16”, 5/64”, 7/64”, 1/8”, 5/32”, 3/16”, 1/4”, 3/8”, 1/2”; and in mesh sizes: 20, 40, 60, 80, 100, 200, 325.

www.haywardflowcontrol.com
1. Hayward guarantees its products against defective material and workmanship only. Hayward assumes no responsibility for damage or injuries resulting from improper installation, misapplication, or abuse of any product.

2. Hayward disclaims any responsibility for damage or injury resulting from chemical incompatibility between its products and the process fluids to which they are subjected. Compatibility charts provided in Hayward literature are based on ambient temperatures of 70°F and are for reference only. Customer should always test to determine application suitability.

3. Consult Hayward literature to determine operating pressure and temperature limitations before installing any Hayward product. Note that the maximum recommended fluid velocity through any Hayward product is eight feet per second. Higher flow rates can result in possible damage due to the water hammer effect. Also note that maximum operating pressure is dependent upon material selection as well as operating temperature.

4. Hayward products are designed primarily for use with non-compressible liquids. They should NEVER be used or tested with compressible fluids such as compressed air or nitrogen.

5. Systems should always be depressurized and drained prior to installing or maintaining Hayward products.

6. Temperature effect on piping systems should always be considered when the systems are initially designed. Piping systems must be designed and supported to prevent excess mechanical loading on Hayward equipment due to system misalignment, weight, shock, vibration, and the effects of thermal expansion and contraction.

7. Because PVC and CPVC plastic products become brittle below 40°F, Hayward recommends caution in their installation and use below this temperature.

8. Published operating torque requirements are based upon testing of new valves using clean water at 70°F. Valve torque is affected by many factors including fluid chemistry, viscosity, flow rate, and temperature. These should be considered when sizing electric or pneumatic actuators.

9. Due to differential thermal expansion rates between metal and plastic, transmittal of pipe vibration, and pipe loading forces, direct installation of metal pipe into plastic connections is not recommended. Wherever installation of plastic valves into metal piping systems is necessary, it is recommended that at least 10 pipe diameters in length of plastic pipe be installed upstream and downstream of the plastic valve to compensate for the factors mentioned above.

SOCKET CONNECTION:

Socket end connections are manufactured to ASTM D2467-94. Solvent cementing of socket end connections to pipe should be performed per ASTM specifications D2855-87. Cut pipe square. Chamfer and deburr pipe. Surfaces must be cleaned and free of dirt, moisture, oil and other foreign material. Apply primer to inside socket surface of the strainer. Never allow primer or cement to contact sealing surfaces or the screen, as leaking may result. Use a scrubbing motion. Repeat applications may be necessary to soften the surface of the socket. Next, apply cement lightly, but uniformly to the inside of the socket. Apply a second coat of cement to the pipe while the surface is still wet with primer. Next apply cement lightly, but uniformly to the inside of the socket. Apply a second coat of cement to the pipe, and assemble the strainer to the pipe, rotating the strainer 1/4 turn in one direction as it is slipped to full depth onto the pipe. The strainer should be held in position for approx. 30 seconds to allow the connection to “set”. After assembly, wipe off excess cement. Full set time is a minimum of 30 minutes at 60 to 100°F. Full cure time should be based on the chart below.

JOINT CURE SCHEDULE:

The cure schedules are suggested as guides. They are based on laboratory test data, and should not be taken to be the recommendations of all cement manufacturers. Individual manufacturer’s recommendations for their particular cement should be followed.

<table>
<thead>
<tr>
<th>Temperature Range During</th>
<th>Test Pressures for Pipe Sizes 1/2 to 1-1/4 In.</th>
<th>Test Pressures for Pipe Sizes 1-1/2 to 3 In.</th>
<th>Test Pressures for Pipe Sizes 4 to 5 In.</th>
<th>Test Pressures for Pipe Sizes 6 to 8 In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure Period(B° C) Up to Above 180 to (1240 kPa)</td>
<td>370 PSI (1240 kPa)</td>
<td>6 h</td>
<td>2 h</td>
<td>12 h</td>
</tr>
<tr>
<td>Up to Above 180 to (1240 kPa)</td>
<td>315 PSI (1240 kPa)</td>
<td>2550 kPa</td>
<td>12 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Up to Above 180 to (1240 kPa)</td>
<td>315 PSI (1240 kPa)</td>
<td>2550 kPa</td>
<td>12 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Up to Above 180 to (1240 kPa)</td>
<td>315 PSI (1240 kPa)</td>
<td>2550 kPa</td>
<td>12 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Up to Above 180 to (1240 kPa)</td>
<td>315 PSI (1240 kPa)</td>
<td>2550 kPa</td>
<td>12 h</td>
<td>24 h</td>
</tr>
</tbody>
</table>

A: It is important to note that at temperatures colder than 20°F on sizes that exceed 3 in., test results indicate that many variables exist in the actual cure rate of the joint. The data expressed in these categories represent only estimated averages. In some cases, cure will be achieved in less time, but isolated test results indicate that even longer periods of cure may be required.

B: These cure schedules are based on laboratory test data obtained on Net Fit Joints (NET FIT—in a dry fit the pipe bottoms snugly in the fitting socket without meeting interference).

THREADED CONNECTION:

Threaded end connections are manufactured to ASTM specifications D2464-88. F437-88 and ANSI B2.1. Wrap threads of pipe with Teflon tape of 3 to 3-1/2 mil thickness. The tape should be wrapped in a clockwise direction starting at the first or second full thread. Overlap each wrap by 1/2 the width of the tape. The wrap should be applied with sufficient tension to allow the threads of a single wrapped area to show through without cutting the tape. The wrap should continue for the full effective length of the thread. Pipe sizes 2" and greater will not benefit with more than a second wrap, due to the greater thread depth. To provide a leak proof joint, the pipe should be threaded into the end connection “hand tight”. Using a strap wrench only. (Never use a stillson type wrench) tighten the joint an additional 1/2 to 1-1/2 turns past hand tight. Tightening beyond this point may induce excessive stress that could cause failure.
FLANGED CONNECTION:
Flange bolts should be tight enough to slightly compress the gasket and make a good seal, without distorting or putting excessive stress on the flanges. Suitable washers should be used between the bolt head and flange and the nut and flange. Bolts should be tightened in alternating sequence.

RECOMMENDED FLANGE BOLT TORQUE. USE WELL LUBRICATED METAL BOLTS AND NUTS. USE SOFT RUBBER GASKETS.

<table>
<thead>
<tr>
<th>FLANGE SIZE</th>
<th>BOLT DIA.</th>
<th>BT. LBS.</th>
<th>FLANGE SIZE</th>
<th>BOLT DIA.</th>
<th>BT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>10-15</td>
<td>2</td>
<td>5/8</td>
<td>15-25</td>
</tr>
<tr>
<td>3/4</td>
<td>1/2</td>
<td>10-15</td>
<td>2-1/2</td>
<td>5/8</td>
<td>20-25</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>10-15</td>
<td>3</td>
<td>5/8</td>
<td>20-25</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1/2</td>
<td>10-15</td>
<td>4</td>
<td>5/8</td>
<td>20-25</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1/2</td>
<td>10-15</td>
<td>6</td>
<td>3/4</td>
<td>30-40</td>
</tr>
</tbody>
</table>

INSTALLATION:
It is recommended that these strainers be installed no closer than 10 pipe diameters from a pump. At least 5 pipe diameters should be between these strainers and an elbow.

As in all plastic piping the maximum fluid velocity is 8 feet per second. This velocity minimizes the effects of valve closure and pump start up or shut down.

SCREEN CLEANING: EXTREME CAUTION MUST BE TAKEN WHEN WORKING ON THIS STRAINER. THE PIPING SYSTEM MUST BE DEPRESSURIZED AND DRAINED. PROPER CARE MUST BE TAKEN. CONSULT M.S.D.S. (MATERIAL SAFETY DATA SHEETS) INFORMATION REGARDING YOUR SPECIFIC APPLICATION.

When the pressure drop across the strainer is in excess of 5 PSI the screen requires cleaning. To clean the screen remove the screen cap nut from the strainer by turning counter clockwise. The collected debris should be removed with the screen. Clean the screen. DO NOT POUND OR DEFORM THE SCREEN. Insert the screen back into the strainer with the flange, if one is on the screen into the body first. Install the o-ring in the body groove. Use a non-petroleum base lubricant to lubricate the o-ring and thread, and re-assemble the cap to the strainer.
Coupon Holders

Fixed (Pipe Plug) Coupon Holders
Metal Samples carries a variety of standard pipe plug coupon holders for flat and cylindrical specimens. We can design and make these assemblies to meet your specifications for size and material requirements.

Pipe Plug Assemblies for Flat Coupons

<table>
<thead>
<tr>
<th>P/N</th>
<th>Plug Size</th>
<th>3" (Std.) Stem</th>
<th>Used with Coupon P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC12E*100036</td>
<td>3/4" NPT</td>
<td>Nylon</td>
<td>CO102, CO117</td>
</tr>
<tr>
<td>RC13E*100036</td>
<td>1" NPT</td>
<td>Nylon</td>
<td>CO102, CO117</td>
</tr>
<tr>
<td>RC12Q*100036</td>
<td>3/4" NPT</td>
<td>Teflon®</td>
<td>CO102, CO117</td>
</tr>
<tr>
<td>RC13Q*100066</td>
<td>1" NPT</td>
<td>Teflon®</td>
<td>CO102, CO117</td>
</tr>
<tr>
<td>RC12E*010036</td>
<td>3/4" NPT</td>
<td>Nylon</td>
<td>CO100, CO103, CO115</td>
</tr>
<tr>
<td>RC13E*010036</td>
<td>1" NPT</td>
<td>Nylon</td>
<td>CO100, CO103, CO115</td>
</tr>
<tr>
<td>RC12Q*010030</td>
<td>3/4" NPT</td>
<td>Teflon®</td>
<td>CO100, CO103, CO115</td>
</tr>
<tr>
<td>RC13Q*010026</td>
<td>1" NPT</td>
<td>Teflon®</td>
<td>CO100, CO103, CO115</td>
</tr>
<tr>
<td>RC12E*030036</td>
<td>3/4" NPT</td>
<td>Nylon</td>
<td>CO118, CO120</td>
</tr>
<tr>
<td>RC13E*030036</td>
<td>1" NPT</td>
<td>Nylon</td>
<td>CO118, CO120</td>
</tr>
<tr>
<td>RC12Q*030035</td>
<td>3/4" NPT</td>
<td>Teflon®</td>
<td>CO118, CO120</td>
</tr>
<tr>
<td>RC13Q*090036</td>
<td>3/4" NPT</td>
<td>Nylon</td>
<td>CO105, CO106</td>
</tr>
<tr>
<td>RC12E*090036</td>
<td>1" NPT</td>
<td>Nylon</td>
<td>CO105, CO106</td>
</tr>
<tr>
<td>RC12Q*090036</td>
<td>3/4" NPT</td>
<td>Teflon®</td>
<td>CO105, CO106</td>
</tr>
<tr>
<td>RC13Q*090036</td>
<td>1" NPT</td>
<td>Teflon®</td>
<td>CO105, CO106</td>
</tr>
<tr>
<td>RC11E*010036</td>
<td>1/2" NPT</td>
<td>Nylon</td>
<td>CO100, CO103, CO115</td>
</tr>
</tbody>
</table>

* Add "3" to part number for Carbon Steel or "C" for PVC plug.

Pipe Plug Assemblies for Cylindrical Coupons

<table>
<thead>
<tr>
<th>P/N</th>
<th>Carbon Steel Plug</th>
<th>Insert</th>
<th># of Stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA2080413709</td>
<td>2" NPT</td>
<td>Nylon</td>
<td>8</td>
</tr>
<tr>
<td>PA2080413783</td>
<td>2" NPT</td>
<td>Teflon®</td>
<td>8</td>
</tr>
<tr>
<td>RC11Q3040000</td>
<td>1/2" NPT</td>
<td>Teflon®</td>
<td>1</td>
</tr>
<tr>
<td>RC12Q3040000</td>
<td>3/4" NPT</td>
<td>Teflon®</td>
<td>1</td>
</tr>
<tr>
<td>RC13Q3040000</td>
<td>1" NPT</td>
<td>Teflon®</td>
<td>1</td>
</tr>
</tbody>
</table>

All of these holders are used with ES2 series coupons.

Bypass Piping Systems
We provide conventional or custom-designed bypass systems for on-line corrosion monitoring. Commonly used in the industrial water treatment industry to determine the corrosive properties of potable or cooling water, these systems are available in PVC, carbon and stainless steels, and other materials.

Bypass systems are easily installed to your existing piping. Normally, all you need is a 1" NPT male fitting on which to attach the bypass. Standard bypass systems come equipped with 4 pipe plug assemblies, 4 pre-weighed mild steel coupons, and a 5-gpm flow control valve.
PVC SCHEDULE 80 FITTINGS

Performance Engineered & Tested

SPEARS® Schedule 80 PVC fitting designs combine years of proven experience with computer generated stress analysis to yield the optimum physical structure and performance for each fitting. Material reinforcement is uniformly placed in stress concentration areas for substantially improved pressure handling capability. Resulting products are subjected to numerous verification tests to assure obtaining the very best PVC fittings available.

Full 1/4” Through 12” Availability
Spears® comprehensive line of injection molded PVC fittings offers a variety of configurations in molded Schedule 80 sizes 1/4” through 12” conforming to ASTM D 2467 and Spears® exclusive CL150 Flanges in sizes 1/2” through 16”.

Exceptional Chemical & Corrosion Resistance
Unlike metal, PVC fittings never rust, scale, or pit, and will provide many years of maintenance-free service and extended system life.

High Temperature Ratings
PVC thermoplastic can handle fluids at service temperatures up to 140° F (60°C), allowing a wide range of process applications, including corrosive fluids.

Lower Installation Costs
Substantially lower material costs than steel alloys or lined steel, combined with lighter weight and ease of installation, can reduce installation costs by as much as 60% over conventional metal systems.

Higher Flow Capacity
Smooth interior walls result in lower pressure loss and higher volume than conventional metal fittings.

Additional Fabricated Configurations through 36”
Extra large, hard-to-find, and custom configurations are fabricated from NSF Certified pipe. Fittings are engineered and tested to provide full pressure handling capabilities according to Spears® specifications.

Advanced Design Specialty Fittings
Spears® wide range of innovative, improved products include numerous metal-to-plastic transition fittings and unions with Spears® patented special reinforced (SR) plastic threads.

PVC Valves
SPEARS® PVC Valve products are available for total system compatibility and uniformity; see SPEARS® THERMOPLASTIC VALVES PRODUCT GUIDE & ENGINEERING SPECIFICATIONS (V-4).

Sample Engineering Specifications
All PVC Schedule 80 fittings shall be produced by Spears® Manufacturing Company from PVC Type I, cell classification 12454, conforming to ASTM Standard D 1784. All injection molded PVC Schedule 80 fittings shall be Certified for potable water service by NSF International and manufactured in strict compliance to ASTM D 2467. All fabricated fittings shall be produced in accordance with Spears® General Specifications for Fabricated Fittings. All PVC flanges shall be designed and manufactured to meet CL150 bolt pattern per ANSI Standard B16.5 and rated for a maximum internal pressure of 150 psi, non-shock at 73°F.

PROGRESSIVE PRODUCTS FROM SPEARS® INNOVATION & TECHNOLOGY
Visit our web site: www.spearsmfg.com
PVC Thermoplastic Pipe Temperature Pressure De-Rating

To determine the maximum internal pressure rating at an elevated temperature, simply multiply the pipe pressure rating at 73°F by the percentage specified for the desired temperature.

<table>
<thead>
<tr>
<th>System Operating Temperature °F (°C)</th>
<th>73 (23)</th>
<th>80 (27)</th>
<th>90 (32)</th>
<th>100 (38)</th>
<th>110 (43)</th>
<th>120 (49)</th>
<th>130 (54)</th>
<th>140 (60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>100%</td>
<td>90%</td>
<td>75%</td>
<td>62%</td>
<td>50%</td>
<td>40%</td>
<td>30%</td>
<td>22%</td>
</tr>
</tbody>
</table>

NOTE: Valves, Unions and Specialty Products have different elevated temperature ratings than pipe.

Typical Material Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>ASTM Test Method</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties, 73°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity, g/cm³</td>
<td>D 792</td>
<td>1.41</td>
</tr>
<tr>
<td>Tensile Strength, psi</td>
<td>D 638</td>
<td>7.000</td>
</tr>
<tr>
<td>Modulus of Elasticity, psi</td>
<td>D 638</td>
<td>440,000</td>
</tr>
<tr>
<td>Compressive Strength, psi</td>
<td>D 695</td>
<td>9.000</td>
</tr>
<tr>
<td>Flexural Strength, psi</td>
<td>D 790</td>
<td>13,200</td>
</tr>
<tr>
<td>Izod Impact, notched, ft-lb / in</td>
<td>D 256</td>
<td>0.65</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Deflection Temperature, °F at 66 psi</td>
<td>D 648</td>
<td>165</td>
</tr>
<tr>
<td>Thermal Conductivity, BTU / hr / sq ft / °F / in</td>
<td>C 177</td>
<td>1.2</td>
</tr>
<tr>
<td>Coefficient of Linear Expansion, in / in / °F</td>
<td>D 696</td>
<td>3.0 x 10⁻⁶</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited Oxygen Index, %</td>
<td>D 2863</td>
<td>43</td>
</tr>
<tr>
<td>UL 94 Rating</td>
<td>94V-0</td>
<td></td>
</tr>
<tr>
<td>Other Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Absorption, % 24 hr.</td>
<td>D 570</td>
<td>0.05</td>
</tr>
<tr>
<td>Industry Standard Color</td>
<td>White / Dark Gray</td>
<td></td>
</tr>
<tr>
<td>ASTM Cell Classification</td>
<td>D 1784</td>
<td>12454</td>
</tr>
<tr>
<td>NSF Potable Water Approved</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

PVC Chemical Resistance

PVC is generally inert to most mineral acids, bases, salts and paraffin hydrocarbon solutions. For more information on PVC chemical resistance refer to the Chemical Resistance of Rigid Vinlys Based on Immersion Test, published by the GEON® company.

NOT FOR USE WITH COMPRESSED AIR OR GASES

Spears® Manufacturing Company DOES NOT RECOMMEND the use of thermoplastic piping products for systems to transport or store compressed air or gases, or the testing of thermoplastic piping systems with compressed air or gases in above and below ground locations. The use of our product in compressed air or gas systems automatically voids any warranty for such products, and its use against our recommendation is entirely the responsibility and liability of the installer.

WARNING: DO NOT USE COMPRESSED AIR OR GAS TO TEST ANY PVC OR CPVC THERMOPLASTIC PIPING PRODUCT OR SYSTEM, AND DO NOT USE DEVICES PROPELLED BY COMPRESSED AIR OR GAS TO CLEAR SYSTEMS. THESE PRACTICES MAY RESULT IN EXPLOSIVE FRAGMENTATION OF SYSTEM PIPING COMPONENTS CAUSING SERIOUS OR FATAL BODILY INJURY.

SPEARS® MANUFACTURING COMPANY • CORPORATE OFFICE
15853 Olden St., Sylmar, CA 91342 • PO Box 9203, Sylmar, CA 91392
(818) 364-1611 • www.spearsmfg.com

PACIFIC SOUTHWEST
15860 Olden St.
Sylmar (Los Angeles), CA 91342
(818) 364-1611 • (800) 862-1499
Fax (818) 367-3014

NORTHWEST
4103 C St. NE Suite 200
Auburn (Seattle), WA 98002
(253) 939-4433 • (800) 347-7327
Fax (253) 939-7557

SOUTHWEST
4250 Patriot Dr. Suite 300
Grapevine (Dallas), TX 76051-2317
(817) 691-4003 • (800) 441-1437
Fax (817) 891-4404

UTAH
5395 West 1520 South
Salt Lake City, UT 84104
(303) 371-9430 • (800) 777-4154
Fax (303) 375-9546

ROCKY MOUNTAIN
4960 Florence St.
Denver, CO 80238
(303) 371-9430 • (800) 777-4154
Fax (303) 375-9546

SOUTHEAST
4205 Newport Pl. Suite 100
Lawrenceville (Atlanta), GA 30043
(770) 985-1263 • (800) 662-6326
Fax (770) 985-5842

SOUTH CENTRAL
590 Industrial Dr. Suite 100
Lewisberry (Harrisburg), PA 17339-9532
(717) 938-8644 • (800) 233-0275
Fax (717) 938-6547

SOUTHEAST MIDWEST
1 Gateway Ct., Suite A
Bolingbrook (Chicago), IL 60440
(630) 759-7529 • (800) 662-6330
Fax (630) 759-7515

NORTHWEST MIDWEST
9563 Parkside Court
Orlando, FL 32837
(407) 843-1960 • (800) 327-6390
Fax (407) 425-3563

INTERNATIONAL SALES
15853 Olden St.
Sylmar (Los Angeles), CA 91342
(818) 364-1611 • Fax (818) 898-3774
E-mail: export@spearsmfg.com

© Copyright 2005 Spears® Manufacturing Company. All Rights Reserved. Printed in the United States of America 11/05.
Acetal Instant Tube-Fitting Orifices

- Maximum Pressure: Not rated
- Temperature Range: Not rated

Instant push-to-connect fittings seal on the outside of tubing for a quick connection. Use these orifices to control flow anywhere in your tubing system. Orifices have an acetal body with a brass insert. Release ring is acetal with stainless steel teeth. O-ring seal is Buna-N. Color is gray. Connections: See table.

<table>
<thead>
<tr>
<th>Tube × NPT Male</th>
<th>OD Size</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8" × 3/8"</td>
<td>6349T11</td>
<td>$10.71</td>
</tr>
<tr>
<td>1/4" × 1/4"</td>
<td>6349T12</td>
<td>$10.71</td>
</tr>
<tr>
<td>3/16" × 3/16"</td>
<td>6349T13</td>
<td>$13.57</td>
</tr>
<tr>
<td>3/32" × 3/32"</td>
<td>6349T15</td>
<td>$11.29</td>
</tr>
</tbody>
</table>

Acetal Check Valves with Instant Tube Connections

- Inline, Tube × Tube Connections
 - Maximum Pressure: 145 psig @ 68°F
 - Cracking Pressure: 0.29 psi
 - Temperature Range: 34° to 159°F

90° Elbow, Tube × NPT Male Connections
- Maximum Pressure: 150 psig @ 70°F
- Cracking Pressure: Not rated
- Temperature Range: 32° to 125°F

Simply push your tubing into the end of these check valves and you’re ready to go. Note: Cv factor is not rated.

In-line valves with tube × tube connections have an opaque white body, Type 302 stainless steel spring, and an acetal piston.

Nylon Plug Orifices

- Maximum Pressure: 100 psi @ 75°F
- Temperature Range: 40° to 120°F

Insert these orifices anywhere in your line that you need to vent, bleed, and purge your system to the atmosphere at a controlled rate. Orifices have a nylon body and a polysulfone insert.

Connections: See table.

<table>
<thead>
<tr>
<th>Orifice Dia.</th>
<th>Color</th>
<th>Air Flow</th>
<th>Water Flow</th>
<th>10-32 Thread</th>
<th>M/4 Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004"</td>
<td>Purple</td>
<td>0.010</td>
<td>0.030</td>
<td>4926T10</td>
<td>4926T11</td>
</tr>
<tr>
<td>0.006"</td>
<td>White</td>
<td>0.021</td>
<td>0.039</td>
<td>4926T12</td>
<td>4926T13</td>
</tr>
<tr>
<td>0.008"</td>
<td>Red</td>
<td>0.031</td>
<td>0.054</td>
<td>4926T14</td>
<td>4926T15</td>
</tr>
<tr>
<td>0.010"</td>
<td>Green</td>
<td>0.040</td>
<td>0.076</td>
<td>4926T16</td>
<td>4926T17</td>
</tr>
</tbody>
</table>

Pressure-Compensating Orifices

Conserves drinking water and energy with these inline-mounted regulating control valves; they deliver consistent outlet flow over varying pressure conditions. The control mechanism is a flexible orifice that varies its effective area in response to the applied pressure. Maximum inlet pressure is 200 psi. Pressures range from 40° to 180°F.

Recess Body—Seal is Buna-N, except for 1 and 2 gpm valves, which have an EPDM ethylene propylene nitrile rubber seal.

Nylon Plated Brass and Type 316 Stainless Steel Bodies—1/2" orifices have an EPDM seal, unless noted. 3/4", 1 1/2", and 1" orifices have a Buna-N seal, unless noted.

Zinc-Plated Steel Body—Seal is Buna-N, except for 1 and 2 gpm orifices, which have an EPDM seal.

Iris-Style Flow-Control Valves

- Iris-style valves give you adjustable control and shut-off of free-flowing bulk materials such as packaging powders, and grains. The handle rotates 180° to vary the size of the valve opening and twist-locks in any position. Body is aluminum and the control ring is bronze.

Standard valves have a nylon sleeve. Maximum temperature is 230°F. FDA-compliant valves have a urethane-coated nylon sleeve. Maximum temperature is 180°F.

<table>
<thead>
<tr>
<th>Sleeve Dia.</th>
<th>Housing Dia. × Thick.</th>
<th>Standard Dia. × Thick.</th>
<th>FDA Compliant Each</th>
<th>FDA Compliant Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>6" × 1/16"</td>
<td>8153K11</td>
<td>$148.75</td>
<td>8153K12</td>
</tr>
<tr>
<td>6"</td>
<td>9/16" × 1/16"</td>
<td>8153K13</td>
<td>$125.12</td>
<td>8153K14</td>
</tr>
<tr>
<td>8"</td>
<td>11/16" × 1/16"</td>
<td>8153K15</td>
<td>$84.38</td>
<td>8153K16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sleeve Dia.</th>
<th>Housing Dia. × Thick.</th>
<th>Standard Dia. × Thick.</th>
<th>FDA Compliant Each</th>
<th>FDA Compliant Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>10"</td>
<td>13/32" × 1/16"</td>
<td>8153K17</td>
<td>$814.06</td>
<td>8153K18</td>
</tr>
<tr>
<td>12"</td>
<td>16" × 1/16"</td>
<td>8153K19</td>
<td>$1137.50</td>
<td>8153K21</td>
</tr>
</tbody>
</table>