Operating Instructions
ProMinent® ProMtrac Series
Water Treatment Controller For Cooling Towers
Part No. PR/CO-IN-OX-TB

Measures Conductivity, ORP, Temperature,
Make-up Water Meter and Flowswitch

Controls the Bleed Solenoid,
Inhibitor Oxidant/DeChlor and Biocide Pumps

Includes Conductivity-Temperature-Flowswitch and ORP Sensors

Part No. PR/CO-IN-OX-TB

Please enter identity code of the device here

Two sets of operating instructions are required for the safe and correct operation
of ProMinent® ProMtrac Water Treatment Controller For Cooling Towers:

Please completely read through these operating instructions first! Do not discard!
The warranty shall be invalidated by damage caused by operating errors!

ProMinent Fluid Controls, Inc. (USA) 136 Industry Drive, Pittsburgh, PA 15275
ProMinent Fluid Controls Ltd. (CANADA) 490 Southgate Drive, Guelph, ON N1G 4P5
ProMtrac

Water Treatment Controller
For Cooling Towers

Measures Conductivity, ORP, Temperature,
Make-up Water Meter and Flowswitch

Controls the Bleed Solenoid,
Inhibitor Oxidant/DeChlor and Biocide Pumps

Includes Conductivity-Temperature-Flowswitch and ORP Sensors

Part No. PR/CO-IN-OX-TB
TABLE OF CONTENTS

ProMtrac Model : PR/CO-IN-OX-TB

Safety ... 4

1. **INSTALLATION**
 1.1 Sample Piping .. 5
 1.2 Controller Enclosure .. 6
 1.3 Backplane Option ... 7
 1.4 Conductivity – Flowswitch Sensor & ORP Sensor ... 8
 1.5 Water Meter .. 9
 1.6 Pumps and Bleed Solenoid ... 10-11

2. **START-UP**
 2.1 Power-up Display & Keypad ... 12-13
 2.2 Bleed Mode: Conductivity Setpoints .. 14
 2.3 Inhibitor Feed Mode: Setpoints, Feed Limits .. 15-16
 2.4 Oxidant-DeChlor: Setpoints, Feed Limit .. 17-18
 2.5 Verify Conductivity & ORP Sensors ... 19-20
 2.6 Check Flowswitch & Install Water Meter ... 21-22
 2.7 Plug-in Pumps and Bleed Solenoid .. 23-24
 2.8 Check Controls ... 25-27

3. **OPERATION**
 3.1 Conductivity Sensor .. 28
 3.2 Bleed Controls ... 29-31
 3.3 ORP Sensor .. 32
 3.4 Oxidant-DeChlor Controls ... 33
 3.5 Make-up Meter ... 34
 3.6 Inhibitor Controls .. 35-37
 3.6.1 ppm Feed Controls ... 38
 3.7 Biocide Events .. 39-44
 3.8 Selecting a Pump Type ... 45-47
 3.9 System – Alarms .. 48-52
 3.10 Password .. 53-54

4. **MAINTENANCE**
 4.1 Guidelines .. 55-58
 4.2 Spare Parts .. 59
 4.3 Technical Support .. 59

APPENDICES

A. INSTALL ... 60-61
B. SPECIFICATIONS ... 62-64
C. HARDWIRING ... 65
D. 'CL' 4-20mA OUTPUT Option ... 66-68
E. 'AR' ALARM RELAY Option ... 69
F. 'LB' LAN - BROWSER Option .. 70
Safety

Electrical Shock Hazard
Removing the lower enclosure cover with the controller plugged in, exposes the user to AC line voltages.

There are no user serviceable parts behind the upper enclosure cover. Do not remove.

USER WARNING : CAUTION

Cooling Tower Water Treatment Controllers operate 120VAC bleed solenoids & pumps and may pump hazardous, corrosive and toxic chemicals.

Opening the controller enclosure exposes user to the risk of electrical shock at power line voltages.

Understand fully the implications of the control setpoints, feed limits and alarms that you select. Harm to personnel and damage to equipment may result from mis-application.

Unplug or turn OFF the AC power to the controller if you have any concerns regarding safety or incorrect controller operation and notify supervisory staff.

YOUR CONTROLLER
Controllers are supplied with default bleed solenoid, oxidant/deChlor and inhibitor feed setpoints that will not be applicable to your cooling tower.

Select control modes, adjust setpoints and set biocide pump timing for your site and its water treatment program.
1. INSTALLATION

1.1 Sample Piping

Controller includes Conductivity-Flowswitch & ORP sensors with a 3/4” PVC sensor header.

If you have not previously installed this type controller, read Appendix A: INSTALL for plumbing and wiring guidelines.

CAUTION: Do not exceed 100psi on the sensor & pump tubing. Always close upstream isolation valves first.

Typical Installation Piping

Your installation may not include a make-up meter.

Smaller towers place the sensors in the tower re-circulation line.
1.2 Controller Enclosure

Remove the lower, controller enclosure cover. Hang the controller on a single #8-#10 screw located 60", 150cm. above the floor. Install the bottom left & right mounting screws through the existing enclosure holes located behind the lower cover.

Although sensor cables and pump tubing may be extended, ease of servicing occurs when water treatment components are located in the same area.

Ensure that the lower enclosure cover is installed after terminating sensor and water meter wiring.
1.3 Backplane Option

ProMtrac controllers may be supplied with pumps, prewired & pre-plumbed on a backplate.

(requested blank page for backplate graphic & part#)
1.4 Conductivity-Flowswitch & ORP Sensors

After installing the conductivity-flowswitch and ORP sensors, open the sample piping downstream isolation valve, then the upstream valve.

Verify that the sensor entries seal, leak and drip free.

ORP sensors include a coaxial cable with tinned ends & a sensor entry ‘T’ with GREEN solution ground.

Controllers are supplied with the Sensors prewired.

Flowswitch Alternative: A dry contact set, closed when there is flow past the sensors may be used as an operating interlock in place of the flowswitch built into the conductivity sensor.

Disconnect the BROWN Flow wire and connect the alternative flowswitch to the Flow and adjacent Ground terminals.
1.5 Water Meter

Refer to manufacturer’s recommendations on meter orientation and upstream and downstream piping. Extend meter cables with AWG22, 2 or 3 conductor.

You’ll need to know the gallons/contact to set up the inhibitor ppm feed rate.

Wiring color differs with meter manufacturer.

Do not install meter cabling in the same conduit at AC power wiring.
1.6 Pumps & Bleed Solenoid

The controller supplies the AC power to the bleed solenoid and frequency control to the pumps. A controller relay switches power to the solenoid, fused at a maximum of 5 Amps. High speed, optically isolated switches control each pump’s frequency.

WARNING:
Do not plug-in controller, pumps or solenoid until you are ready to setup & operate

HARDWIRING:
refer to appendix ‘C’

Before plugging in the controller, connect the chemical pumps orange control cables to the controller.

GREEN LEDs
- BS is the Bleed Solenoid
- P1 is the Inhibitor Pump
- P2 is the Oxidant or AntiChlor Pump
- P3 is the Biocide Pump

Auto-correcting Pump control:
- WHITE to ‘A’ & BROWN to ‘B’
- BROWN to ‘A’ & WHITE to ‘B’

Connect Brown-White to ‘A’ and ‘B’ Terminals

Orange Pump Control Cables
1.6 Pumps & Bleed Solenoid

continued

START-UP *BEFORE* you plug-in pumps and bleed solenoid.

A: Plug-in the controller.

B: Set control modes for the bleed, oxidant-dechlor and inhibitor and setpoints.

C: Set the volume feed limits on the inhibitor & oxidant-dechlor pumps.

D: Verify that the sensors are reading correctly and set the alarms.

E: If you are using a water meter; force make-up and verify that meter is measuring the expected volume.

F: Verify that the flowswitch is working by valving OFF flow to the sample piping.

Detail on performing each of the previous START-UP follow in Section 2 of this manual

An overview of system operation is available in the *Yearly* section of 4.1 Maintenance.

Sidebars: At the bottom of many of the manual pages, provide detail or overview that would clutter the manual.

OXIDANT-DECHLOR: If the controller displays Oxidant Pump it’s set to control oxidant feed. Refer to section 3.9 System for switching from OXIDANT to DECHLOR control modes.

Built-in HELP:
Current State: The Bleed Solenoid and each of the three pumps has it’s own Current State LCD display which tell you why the control is either ON or OFF. For example: Why is the Bleed ON when the tower conductivity is less than the TurnOFF setpoint. The Bleed Solenoid Current State would tell you that a biocide Prebleed is occurring and count down the remaining Prebleed time.

Off Site HELP:
The ?123 numbers that occasionally appear at the end of the first line of the display reference on-line help that adds more explanation than could fit on a two line display. See Section 4.3 of this manual for help site links.
2. START-UP

2.1 Power-up Display & Keypad

UP & DOWN to view options or to EDIT numbers
Move **RIGHT** to select next field when EDITing
ENTER to select an option & to execute EDITing
EXIT to escape option, info display or EDITing

Enclosure keypad Response

UP or DOWN to the display you wish to view or EDIT & press ENTER

Power ON display: Day of Week & current time

Thu 16:54:10 S/N: P041XF486

Press ENTER to clear Alarms

Alarms none

Current Conductivity sensor value
Press ENTER for Conductivity Calibrate & Alarms

Conductivity 1425 uS

Solenoid ON or OFF and ON time today
Press ENTER for Bleed Setpoints, Bleed Mode, Test, End Prebleed or Lockout and Current State

Bleed Solenoid ON 25.6min

Current ORP sensor value
Press ENTER for ORP Calibrate & Alarms

ORP Sensor 241 mV

Oxidant or DeChlor Pump ON or OFF and volume fed from midnight.
Press ENTER for Setpoints, Feed Mode, Volume Limit, Prime Pump, Pump Type and Current State

Oxidant Pump ON 3.566 Gal
2.1 Power-up Display & Keypad

Water meter measured volume from midnight
Press ENTER to Install, Select meter type,
View year-to-date & days on-line
Inhibitor Pump ON or OFF and volume fed from midnight.
Press ENTER for Inhibitor Setpoints, Feed Mode,
Volume Limit, Prime Pump, Pump Type and Current State.
Flowswitch ON or OFF and ON time today
Biocide Pump ON or OFF, volume fed today & Cycle Day
Press ENTER for Add, Edit & Delete Events, Prebleed,
Lockout, Prime Pump, Pump Type,
Cycle Days and Current State
If there is no option card installed
you’ll view the Day-Date power-up display

Make-up Today 10450 G
Inhibitor Pump ON 1.317 Gal
Flowswitch ON 780.6min
Biocide Day 5 OFF 30.0min
Thu 16:54:10 S/N: T041T0486

LAN –Browser, ‘LB’ Option
Displays current IP – see Appendix F, ‘LAN’ for User Manual
4-20mA Output, ‘CL’ Option
Displays loop current – see Appendix D, ‘4-20mA OUTPUT’
for User Manual
Alarm Relay, ‘AR’ Option
Displays relay state – see Appendix E, ‘ALARM RELAY’

Displayed if Option card installed

LAN IP 192.168.002.101
4-20mA Output 15.4mA
Alarm Relay Closed

Sidebar: Volumes less than 100mL are displayed in mL so you can verify that a pump is
feeding. Volumes greater than 100mL are displayed in Gallons or Liters with 3 decimal points
of resolution. Again, so you can ensure the controller is metering chemical.
2.2 Bleed Mode: Conductivity Setpoints

The factory default is ‘Bleed on Conductivity’
Refer to 3.2 Bleed Controls
to select one of three Bleed Modes

Press UP or DOWN until you see
‘Bleed Solenoid’ & press ENTER

Press ENTER to view or adjust Setpoints

Displays current bleed setpoints,
Varies with Bleed Mode

Press ENTER adjust Turn ON,
or DOWN & ENTER for TurnOFF

Press UP or DOWN to adjust and RIGHT
to move the cursor.
Press EXIT to leave the Setpoints unchanged

Press ENTER, displays current setpoints.

If you make Turn ON less than TurnOFF,
the setpoints will be switched.

Sidebar: The difference between Turn ON & TurnOFF, the ‘deadband’, is usually set to 10uS.
If you are watching the tower conductivity as the sump float turns the make-up water ON & OFF, you’ll observe the operational deadband exceeds 10uS.

Delays in starting and stopping the make-up due to sump float trip points, increase the operational deadband beyond the controller ON–OFF setpoints.
2.3 Inhibitor Feed Mode: Setpoints, Feed Limits

The factory default feed mode is ‘Bleed & Feed’
Refer to 3.6 Inhibitor Controls to select one of four Feed Modes

Press UP or DOWN until you see 'Inhibitor Pump' & press ENTER

Press ENTER to view or adjust Setpoints

Displays current feed mode & setpoint,
Whenever the Bleed Solenoid is ON; the Inhibitor Pump will be feeding @ 3.25mL/minute.

Press ENTER adjust the feed rate,
Press UP or DOWN to adjust and RIGHT to move the cursor.
Press EXIT to leave the Setpoint unchanged
Press ENTER, displays current setpoint, 3.05 mL/minute.

Sidebar: Bleed & Feed is the most common, but usually not the best way to feed inhibitor.
If you are not bleed limited, use Bleed then Feed mode to reduce inhibitor use.
If you are using a make-up water meter to control inhibitor feed, the controller will delay feeding when the bleed valve is ON to avoid pumping inhibitor down the drain.
If you request a feed rate greater than the installed pump capacity, the controller sets the rate to the pump maximum & displays an error message.
2.3 Inhibitor Feed Mode: Setpoints, Feed Limits

The Inhibitor feed limit turns OFF the inhibitor pump to prevent overfeeding. The factory default feed limit 0.5 Gallons/day.

Press UP or DOWN until you see 'Inhibitor Pump' & press ENTER.

Press UP or DOWN until Feed Limit. Press ENTER to view or adjust daily volume.

Displays the daily feed volume limit, ?157 indexes more on-line explanation.

Press ENTER to adjust daily feed Limit,

Press UP-DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave the Daily Limit unchanged

Press ENTER, displays the current daily limit, 2.25 Gallons/day

HELP: ?157 and other help numbers display wherever more explanation is available at the HELP link noted in Section 4.3 of this manual.

If you are using this type of water treatment control for the first time, the language and application of some of the controller options and settings requires more detail than a 2 line display can deliver.
2.4 Oxidant-DeChlor: Setpoints, Feed Limit

The factory default is ‘Oxidant Pump’ & ‘ORP Control’
Refer to 3.4 Oxidant-DeChlor Controls
to select one of two Control Modes

If you have selected ‘DeChlor’, then
‘DeChlor Pump’ will be displayed.
Refer to section 3.9 System-Alarms.

Press UP or DOWN until you see ‘Oxidant Pump’.
The pump is OFF & has fed 1.218 Gallons since midnight

Press ENTER.
Press ENTER to view or adjust Setpoints.
Displays current pump operating setpoints.
Pump is 100% ON when the ORP is below 280 mV and OFF when the ORP is above 320 mV.
As the ORP increases from 280 to 320, the feed rate decreases from maximum strokes/minute to zero strokes/minute.

Press ENTER adjust 100% ON, or DOWN & ENTER for TurnOFF
Press UP or DOWN to adjust and RIGHT to move the cursor.
Press EXIT to leave the Setpoints unchanged
Press ENTER, displays current setpoints.
If you make 100% ON greater than TurnOFF, the setpoints will be switched

Sidebar:
Oxidant control setpoints are usually set by measuring the available oxidant in the tower.

For example, if the ORP reads 315mV when the tower has 0.5ppm oxidant, setpoints of 290mV & 315mV will maintain the tower @ 0.5ppm.
The feed limit turns OFF the Oxidant or deChlor pump to prevent overfeeding. The factory default fed limit is 0.5 Gallons.

Press UP or DOWN until you see 'Oxidant Pump' or 'DeChlor Pump' & press ENTER.

Press DOWN until Feed Limit. Press ENTER to view or adjust Feed Limit.

Displays feed volume limit in minutes, ?XXX indexes more explanation @ the support web site

Press ENTER adjust Feed Limit,

Press UP-DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave the Feed Limit unchanged

Press ENTER, displays the current feed limit, 2.5 Gallons.

Sidebar: The ORP must be less than the 100% ON setpoint before the Feed Limit volume is exceeded.

The limit timer prevents oxidant overfeeding if the ORP sensor fouls or fails & would typically be set at 125% to 150% of the longest expected feed time at maximum feed rate.

Note: The Oxidant feed limit restarts every time the pump turns ON & does not reset at midnight. unless the user sets the ‘Reset @ Midnite’ option. Refer to Section 3.9

Exceeding the volume limit timer may indicate problems with ORP sensor or oxidant feed.
2.5 Verify Conductivity & ORP Sensors

Open the downstream, then the upstream sample line isolation valves, immersing the conductivity sensor.

Press UP or DOWN until you see Day & Time. Press ENTER.

Press ENTER & then press ENTER to view temperature at the conductivity sensor.

If the BLUE, GREEN & WHITE wires are connected to the controller terminals, you’ll view the current temperature. ‘Fault’ indicates a wiring or sensor problem.

‘Fault’ automatically removes conductivity temperature compensation. Key EXIT twice to return to Day & Time.

Press DOWN until you see Conductivity. Sample the tower water & verify that the displayed conductivity matches the measured conductivity.

Adjust the displayed conductivity by pressing ENTER twice.

Press UP or DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave Conductivity unchanged.

You’ll see this screen if the sensor is fouled, miswired, not immersed or you keyed incorrectly. **Press ENTER to ignore or EXIT to return to Factory Default.**

?141 indexes more online explanation.

ENTER displays the current, calibrated conductivity.
2.5 Verify Conductivity & ORP Sensors continued

Open the downstream, then the upstream sample line isolation valves, immersing the conductivity & ORP sensors

Press UP or DOWN until you see pH Sensor.
Sample the tower water & verify that the displayed ORP matches the measured ORP.

Adjust the displayed ORP by pressing ENTER twice.

Press UP or DOWN to adjust and RIGHT to move the cursor.
Press EXIT to leave ORP unchanged.

You'll see this screen if the sensor is fouled, miswired, not immersed or you keyed incorrectly.
Press ENTER to ignore or EXIT to return to Factory Default.

Displays the current, calibrated ORP

Sidebar: ORP’s typically are 50 to 150mV in towers with no residual oxidant.

Negative ORPs are almost never measured in cooling towers and usually indicate a fouled or miswired sensor.

The correlation between ORP & available oxidant varies with treatment program, cycles of concentration and make-up water chemistry.
ProMtrac Model: PR/CO-IN-OX-TB

ProMtrac: Water Treatment Controller

2.6 Check Flowswitch & Install Water Meter

Open the downstream, then the upstream sample line isolation valves, immersing the conductivity sensor. **Note: The thermal flowswitch requires a maximum of 30 seconds to respond to the change from NO-Flow to Flow**

Press UP or DOWN until you see Flowswitch. Displays ON or OFF and the total minutes ON from midnight.

NOTE: An OFF flowswitch stops all pumps and the bleed solenoid. The flowswitch can be bypassed by jumpering the Flow terminal to the adjacent ground terminal.

![Flowswitch](image)

The factory default water meter is a 100 Gallons/contact contact head meter

Press UP - DOWN until you see Make-up Today. Displays make-up volume from midnight.

![Contact Head](image)

Press ENTER twice to view or change meter type.

![Watermeter](image)

Key ENTER to view or change the gallons/contact. Metric users will view volumes in ‘L’iters & L/Contact

Press UP-DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave Gallons/contact unchanged.

![Edit & ENTER](image)

ENTER or EXIT displays the current meter type.

Sidebar: 2 wire meters are usually Contact Head & 3 wire meters are usually, but not always Turbine or Paddlewheel.
2.6 Check Flowswitch & Install Water Meter

continued

Turbine-Paddlewheel type water meters provide pulses per Gallon or Liter. The number of Pulses/Unit Volume is the ‘K’ factor.

Press UP or DOWN until you see Make-up Today. Displays make-up volume from midnight.

Press ENTER twice to view or change meter type.

Key DOWN to select Paddlewheel type meter

Key ENTER to view or change the pulses per Gallon. Metric users view pulses per Liter.

Press UP-DOWN to adjust ‘K’ Factor or EXIT to leave unchanged.

ENTER or EXIT displays the current meter type.

Sidebar: Force make-up by either opening the bleed solenoid bypass or lowering the Bleed Setpoints.

Verify that the make-up meter displays an increasing volume as the float opens the make-up line. Close the bypass or reset Bleed Setpoints after verifying the meter.

WARNING: Verify paddlewheel meters immediately and disconnect if not verified. Mis-wired paddlewheel meters will fail the water meter Hall Effect sensor.
2.7 Plug-in Pumps and Bleed Solenoid

Sections 2.1 to 2.6 adjust setpoints and verify sensors. We’re now ready for the bleed solenoid and each chemical pump, verifying each one as it’s plugged in.

Remove the lower access panel on the controller enclosure.

Plug the bleed solenoid into the controller sidewall plug. Press UP or DOWN to view Bleed Solenoid.

If ON, verify that the green BS light on the right side of the enclosure is ON.

Verify that the bleed solenoid is open and that tower water is going to drain.

If OFF, press ENTER & DOWN twice to Test Bleed. Press ENTER and the Bleed & BS light will turn ON for 5 minutes.

Set the Inhibitor pump frequency control to External and Stroke control to 100%

Plug in the inhibitor pump. Press UP or DOWN to view Inhibitor Pump.

If ON, verify that the green P1 light on the right side of the enclosure is flashing.

Verify that the pump is stroking, primed and feeding inhibitor.

If OFF, press ENTER & DOWN to Prime Pump.

Press ENTER and the Inhibitor Pump & P1 light will turn ON for 5 minutes at the current mL/minute setpoint.

Sidebar: The Bleed Solenoid and Pumps will not turn ON unless the Flowswitch is ON. The BS,P1,P2 & P3 lights will not turn ON unless the Flowswitch is ON.

Inhibitor pumps set to ‘Bleed then Feed’ or ‘Feed on Volume’ modes will not feed if the Bleed Solenoid is ON. Feed starts as soon as Bleed ends.
2.7 Plug-in Pumps and Bleed Solenoid continued

Set the Oxidant-DeChlor pump frequency control to External and Stroke control to 100%

Plug in the Oxidant-DeChlor pump.
Press UP or DOWN to view ‘Oxidant Pump’ or ‘DeChlor Pump’.

If ON, verify that the green P1 light on the right side of the enclosure is flashing.
Verify that the pump is stroking, primed and feeding.
If OFF, press ENTER & DOWN to Prime Pump.

Press ENTER and the Pump & P2 light will turn ON for 5 minutes at the maximum stroke rate.

See Section 3.6 Biocide Events, to set biotiming

Set the Biocide pump frequency control to External and Stroke to 100%
Plug in the Biocide pump.
Press UP or DOWN to view Biocide.

If ON, verify that the green P3 light on the right side on the enclosure is flashing.
Verify that the pump is stroking, primed and feeding biocide.
If OFF, press ENTER & UP 4 times to Prime Pump.

Press ENTER and the Biocide pump & P3 light will turn ON for 5 minutes at maximum stroke rate.

Reinstall the lower access panel on the controller enclosure

Sidebar: The Bleed Solenoid and Pumps will not turn ON unless the Flowswitch is ON.

Priming the Biocide pump does not cause a bleed solenoid Prebleed or Lockout.
Press ENTER at ‘Alarms’ and ENTER at ‘Clear Alarms’ to end Test Bleed and/or Prime Pumps.
ProMtrac: Water Treatment Controller

2.8 Check Controls

Verify that the controls work in the way that you expect for this site.

Watch the Conductivity increase as the tower operates.

The Bleed Solenoid will turn ON as the conductivity exceeds the Turn ON setpoint.

As the tower makes up, the Conductivity will fall below the Turn OFF setpoint and the Bleed Solenoid will turn OFF.

Verifying a Bleed controlled by a Make-up Meter or Percentage time differs.

If the Inhibitor feed mode is set to ‘Bleed & Feed’, the Inhibitor Pump will turn ON when the Bleed turns ON.

The Inhibitor pump stroke rate will vary with feed mode and setpoint. Inhibitor controlled by the water meter and Bleed-then-Feed mode feed at the maximum stroke rate.

If the Inhibitor feed mode is set ‘Bleed then Feed’ the Inhibitor Pump will always be OFF when the Bleed is ON; turning ON as soon as the bleed turns OFF.

If the inhibitor pump is set to ‘Feed on Volume’, the inhibitor pump will turn ON after measuring Make-up.

If the Bleed is ON, the Inhibitor Pump will wait until the Bleed turns OFF before turning ON.

Sidebar: The Bleed Solenoid and Pumps will not turn ON unless the Flowswitch is ON. The Inhibitor Pump turns OFF if the daily volume limit is exceeded. Increase the Daily Limit to allow the pump to turn ON.

Bleed Solenoids may turn OFF if Biocide is set to Prebleed and a timed event is scheduled. Bleed Solenoids may not turn ON if Biocide is set to Lockout and a timed event has started.
2.8 Check Controls
continued

Watch the ORP decrease as the tower operates and consumes oxidant.

An Oxidant Pump will turn ON as the ORP falls below the Turn OFF setpoint.

Pumping frequency will increase as the ORP falls towards the 100%ON setpoint.

As the oxidant demand is met the ORP will:
- Exceed the TurnOFF setpoint and the Oxidant Pump will turn OFF.
- OR
- Operate continuously, changing frequency to meet a constant demand for oxidant

Verifying an Oxidant controlled by ‘Percentage Time’ mode differs since pump ON and OFF times do not respond to ORP level.

Sidebar: ORP is an indirect measure of available oxidant & may change slowly at high oxidant levels. ORP typically will not change if there is no residual oxidant in the tower. The Oxidant Pump turns OFF if the Feed Limit volume is exceeded. Press ENTER @ ‘Alarms’ & ‘Clear Alarms’ to reset.

AntiChlor Sites:
Controllers used to feed an AntiChlor remove residual chlorine from process streams, prior to use by a Reverse Osmosis system or discharge. The ‘100%ON’ and ‘TurnOFF’ setpoints are reversed by the controller to allow the anti-oxidant to drive the ORP lower as the residual oxidant is consumed.
Press UP or DOWN to view the **Biocide**, the **Bleed Solenoid** and the value of the **Conductivity** sensor.

If you have not set a Biocide Prebleed or Lockout, The Biocide pump will turn ON for the preset volume on the selected Day#. Prebleed time starts at the time set for the event & ends after the Prebleed time OR when the conductivity target is met.

Lockout time starts after the biocide volume has been fed, turning OFF the Bleed.

During Prebleed watch the Bleed Solenoid & Conductivity. During Lockout, watch the Bleed Solenoid ‘Status’

Press ENTER & DOWN @ Bleed Solenoid for Prebleed and/or Lockout end options.

Sidebar: If you set the Prebleed conductivity below the make-up conductivity, then you will always prebleed for all of the prebleed time.

If you require a long Lockout, feed during low tower load to prevent over-cycling the tower.

Do not set Biocide start time before the building automation system turns ON the tower recirculating pump.

Non-Oxidizing biocides may require a longer ‘kill time’ than an oxidizing biocide and therefore a longer ‘Lockout’
3. OPERATION

3.1 Conductivity Sensor

Sensor calibration and temperature verify is detailed in Section 2.4 Verify Conductivity Sensor.

Press UP or DOWN until you see Conductivity.

<table>
<thead>
<tr>
<th>Conductivity</th>
<th>1425 uS</th>
</tr>
</thead>
</table>

Press ENTER & then DOWN to Alarms.

<table>
<thead>
<tr>
<th>Calibrate Alarms</th>
</tr>
</thead>
</table>

Press ENTER to view current alarms or adjust.

<table>
<thead>
<tr>
<th>Alarms</th>
</tr>
</thead>
</table>

Press ENTER to adjust the High Alarm or DOWN & ENTER to adjust the Low Alarm.

<table>
<thead>
<tr>
<th>High 1600uS</th>
<th>Low 1200uS</th>
</tr>
</thead>
</table>

Press UP-DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave Alarm unchanged.

<table>
<thead>
<tr>
<th>Edit & ENTER High 1550uS</th>
</tr>
</thead>
</table>

ENTER updates the alarms & displays the current High & Low Alarms.

<table>
<thead>
<tr>
<th>Conductivity Alarms display on the ‘Alarms’ display and reset automatically.</th>
</tr>
</thead>
</table>

'Clear Alarms' does not reset a conductivity alarm above the High or less than the Low Alarm level.

Sidebar: Conductivity alarms may occur when the tower shuts down and drains the sample line or when a Biocide event Prebleed, lowers the conductivity.

When the measured conductivity is between the High & Low alarms, the Conductivity alarm is automatically reset.
3.2 Bleed Controls

For conductivity control setpoints Section 2.2

Bleed Mode: Conductivity Setpoints

Press UP or DOWN until you see Bleed Solenoid.
Displays ON or OFF and ON time from midnight.

Press ENTER to view or adjust Setpoints.
Setpoints vary with selected Bleed Mode.

Press ENTER view current mode or to select from Conductivity Control, Percentage Time OR Meter Control.

Press ENTER @ Test Bleed to turn ON bleed solenoid for 5 minutes. 'Alarms'-‘Clear Alarms' ends the Test.

Press ENTER @ End Prebleed to a start Biocide Event on a prebleeding Bleed Solenoid.

Press ENTER @ End Lockout to return to normal Bleed Solenoid control.

Press ENTER @ Current State to view control status. Display varies with Bleed Mode

Sidebar: Test Bleed will not turn ON the solenoid if the flowswitch is OFF.

End Prebleed & End Lockout have no effect if the Bleed Solenoid is not Prebleeding or Locked Out.
3.2 Bleed Controls

continued

Bleed Solenoid Bleed Modes

Press ENTER then DOWN @ Bleed Solenoid

Press ENTER @ Bleed Mode to view current mode and to select a new mode

Most cooling towers operate with Conductivity Control. Bleed solenoid opens at TurnON conductivity setpoint and closes at TurnOFF setpoint

Percentage Time turns ON the bleed solenoid for a user set % of 5 minutes.

Meter Control Measures a user set volume on the Make-up water meter then turns ON the bleed solenoid for a user set time. For example: Measure 100 Gallons of make-up & bleed for 10 seconds.

NOTE: If you change the Bleed Mode, press UP to Setpoints & ENTER to adjust for the new Bleed Mode.

Sidebar: ‘Meter Control’ mode is used where sensor fouling from silica or organics continuously fouls the conductivity sensor.

‘Percentage Time’ mode is used short term to bleed while replacing a sensor or installing a water meter.
3.2 Bleed Controls continued

Current State of the Bleed Solenoid Control

Press ENTER then UP @ Bleed Solenoid

Press ENTER @ Current State

If bleed ON, displays TurnOFF setpoint, 975 & current conductivity, 993
If bleed OFF, displays TurnOFF setpoint, 1000 & current conductivity, 993

If bleed ON, displays Owes 101 sec ?122 & ON ENTER=Stop
If bleed OFF, displays turn-on volume, 10400 & current volume 10,200

If bleed ON, displays Owes 41 sec ?123 & ON ENTER=Stop
Seconds count down to zero & bleed turns OFF.
If bleed OFF, displays seconds to turn ON.
Seconds count down to zero & bleed turns ON.

HELP: ?121,122 & ?123 and other help numbers display wherever more explanation is available online.

‘ON ENTER=Stop’ ends the current feed cycle or %Time ON period.
3.3 ORP Sensor

Sensor calibration is detailed in Section 2.5 Verify Conductivity & pH Sensors

Press UP or DOWN until you see ORP Sensor.

Press ENTER & then DOWN to Alarms.

Press ENTER to view current alarms or adjust

Press ENTER to adjust the High Alarm or DOWN & ENTER to adjust the Low Alarm

Press UP-DOWN to adjust and RIGHT to move the cursor. Press EXIT to leave Alarm unchanged.

ENTER updates the alarms & displays the current High & Low Alarms.

ORP Alarms display on the ‘Alarms’ display and reset automatically.

‘Clear Alarms’ does not reset an ORP alarm above the High or less than the Low Alarm level.

High alarms occur on a failure to feed or sensor fault.
Low alarms occur on an overfeed or sensor fault.

Sidebar: ORP alarms may occur when the tower shuts down and drains the sample line or when an ORP sensor fouls.

Surface fouling of ORP sensors in low flow rate sample lines is the primary cause of ORP sensor faults. Sensors can be cleaned with a paper towel or soft bristle brush.
3.4 Oxidant-DeChlor Controls

For ORP Control setpoints & Pump Feed Limit see Section 2.4 Oxidant-DeChlor: Setpoints, Feed Limit

Oxidant or DeChlor Pump Control Modes
Press ENTER then DOWN @ Oxidant or DeChlor Pump

Press ENTER @ Feed Mode to view current mode and to select a new mode

Most cooling towers operate with ORP Control. An Oxidant Pump turns ON at TurnOFF ORP setpoint, increasing the feed rate to the pump maximum SPM.

Base Feed turns ON the Pump At contacts user set rate in mL/minute It’s a mode that may be used to bypass an ORP sensor

NOTE: If you change the Feed Mode, press UP to Setpoints & ENTER to adjust for the new Feed Mode.

Current State of Oxidant-DeChlor Pump Control
The Current State changes with the selected Feed Mode Press ENTER then UP @ Oxidant or DeChlor Pump.

Press ENTER @ Current State

If the pump is ON, displays TurnOFF setpoint, 256mV & the current feed rate, 60.773% of maximum.

If the pump is OFF, displays the TurnOFF setpoint, and the current ORP in mV.

If the Oxidant Pump is ON, displays the current feed rate and the % of the maximum pump capacity.

?231 & ?233 Help numbers display wherever more explanation is available online.
3.5 Make-up Meter

Meter type selection & installation detailed in Section 2.6 Check Flowswitch & Install Water Meter

Press UP or DOWN until you see ‘Make-up Today’ & press ENTER.

Press ENTER to view current type or to select Contact Head or Paddlewheel water meter.

Key DOWN & ENTER for volume this year. Press ENTER for current volume.

Key DOWN & ENTER for days on-line this year. Press ENTER for current days.

Key ENTER to reset Year-to-Date, Days Online and Make-up Today to zero. Warning: Cannot Undo

Volume this year to date. Displays in ‘liters if metric selected. (Press ENTER at Year-to-Date to view)

Days controller installed and operating this year. Does not count the days that controller power is OFF. (Press ENTER at Days Online to view)

Press EXIT to return to previous display

Sidebar: ‘Year-to-Date’ volume divided by ‘Days Online’ is average usage, a figure of merit for a tower tonnage.

HELP: ?192 & ?193 and other help numbers display wherever more explanation is available online.
3.6 Inhibitor Controls

For inhibitor control setpoints & daily feed limit, refer to Section 2.3 Inhibitor Feed Mode: Setpoints, Feed Limits

Press UP or DOWN until you see Inhibitor Pump. Displays ON or OFF and volume from midnight.

Press ENTER to view or adjust Setpoints. Setpoints vary with selected Feed Mode.

Press ENTER view current feed mode or to select from Bleed & Feed, Bleed then Feed, Base Feed OR Feed on Volume.

Press ENTER to set maximum volume fed per day

Press ENTER @ Prime Pump to turn ON Inhibitor Pump for 5 minutes. ‘Alarms’-'Clear Alarms' ends Priming.

Press ENTER to view or modify Pump type, mL/stroke or maximum stroke rate.

Press ENTER @ Current State to view control pump status. Display varies with Feed Mode

Sidebar: ‘Prime Pump’ will not turn ON the Pump if the flowswitch is OFF.

Inhibitor pumps set to ‘Bleed then Feed’ or ‘Feed on Volume’ modes will not feed if the Bleed Solenoid is ON. Feed starts as soon as Bleed ends.

Pump Type is seldom changed but mL/stroke may be adjusted to increase feed accuracy.
Inhibitor Pump Feed Modes

Press ENTER then DOWN @ Inhibitor Pump

Press ENTER & DOWN @ Feed Mode to view current mode and to select a new mode

Inhibitor pump turns ON when Bleed solenoid ON. Pumps inhibitor at the user set mL/minute

Inhibitor pump turns ON after Bleed solenoid turns OFF. Pumps inhibitor at user set mL/minute of bleed ON time.

Base Feed turns ON the Inhibitor Pump while the Flowswitch is ON at the user set mL/minute.

Feed on Volume measures a user set volume on the Make-up water meter then pumps inhibitor proportional to make-up volume.

For example:
Measure 100 Gallons and then feed 125ppm of inhibitor.

Note: If you change the Feed Mode, press UP to Setpoints & ENTER to adjust for the new Feed Mode.

Sidebar: ‘Bleed & Feed’ is used on bleed limited towers where the bleed solenoid is ON for more than 50% of the time.‘Bleed then Feed’ is used on towers which don’t have a make-up water meter; typically reducing inhibitor usage over ‘Bleed & Feed’ since you are not pumping inhibitor with the Bleed ON. ‘Base Feed’ is used during start-up or when the tower is not loaded. ‘Feed on Volume’ is usually the most accurate & reliable way to feed for towers which have a make-up meter. It’s also the easiest to setup since the setpoint is in ppm.
Current State of the Inhibitor Pump Control

Press ENTER then UP @ Inhibitor Pump
Current state display depends on selected Feed Mode

Press ENTER @ Current State

If the Bleed Solenoid is ON, displays current feed rate & percentage of pump capacity
If the Bleed Solenoid is OFF: displays Bleed Off

If Pump ON, displays owed volume
Owed volume pumps down to zero and pump turns OFF.
If OFF, displays ‘Bleed Off’

If flowswitch ON, displays current feed rate & percentage of pump capacity
If Bleed OFF: displays Bleed Off

If Pump ON, displays owed volume
Owed volume pumps down to zero and pump turns OFF.
If Pump OFF, displays turn-on volume, 9800 & current volume 9700

Sidebar: Bleed & Feed feeds at the user set rates while the Bleed Solenoid is ON
Bleed then Feed feeds the user set mL for every minute of Bleed ON time after the Bleed turns OFF at maximum stroke rate.
Feed on Volume feeds after the Bleed turns OFF at maximum stroke rate.

‘ON ENTER=Stop’ zeroes the owed volume in Bleed then Feed & Feed on Volume modes.

3.6.1 Inhibitor Controls

ppm Feed Controls

If a make-up water meter is installed and cabled to the controller, the Inhibitor pump can use a ‘ppm’ setpoint.

Press ENTER @ Inhibitor Pump

If the Feed Mode has been set to ‘Feed on Volume’ ‘Measure’ and ‘Feed’ setpoints will be displayed.

‘Measure’ refers to the make-up water meter volume. ‘Feed’ is the ppm setpoint.

In this example, the controller feeds 0.0075 Gallons of inhibitor every 100 Gallons of make-up.

You can adjust both the Measure & ppm setpoints.

In this example, the ppm setpoint is increased from 75 ppm to 120 ppm

Use the RIGHT key to select the digit you are adjusting with the UP & DOWN keys.

Sidebar: Maintaining the required inhibitor ppm in the cooling tower using Bleed & Feed or Bleed then Feed modes requires more expertise to configure & usually a few adjustments.

Don’t worry about making the Measure setpoint some multiple of the water meter gallons/contact, the controller will do the math.

In this example the water meter could be a 10 Gallons/contact type or a paddlewheel type with a 'K' factor of 168. In both cases the controller does the math and correctly meters to maintain the setpoint ppm.

Inhibitors are blended in varying concentrations with effective scale or corrosion control specified at a ppm concentration of inhibitor.

If the tower currently has zero ppm inhibitor, estimate the total amount of water in the tower & piping and pump enough inhibitor to get to the target inhibitor ppm.
3.7 Biocide Events

Biocide Menu Options

Press UP or DOWN until you see ‘Biocide’
Displays ON or OFF and volume fed from midnight.
Day# in selected Cycle 1.28 or 1..7 or 1

Press ENTER to Add a new biocide event.

Press ENTER to delete all events.
‘Delete’ not displayed if no events set.

Press ENTER to view Prebleed Time & Conductivity.
Prebleed runs before each event.
Factory default is 0 minutes Prebleed.

Press ENTER to view Bleed Lockout Time.
Lockout starts when each event starts.
Factory default is 0 minutes Lockout.

Press ENTER to turn ON Biocide pump for 5 minutes.
Prebleed & Lockout do not run when Prime Pump selected.

Press ENTER to view Cycle Days.
Events repeat every 28 days, 7days or 1 day.
Factory default is 28 Days

Press ENTER to view or modify current pump type,
ml/stroke and pump maximum strokes/ minute

Press ENTER @ Current State to view Biocide pump status.

Sample Biocide Events

Biocide Day12
OFF 4.211 Gal

Add Events
Edit 4 Events

Edit 4 Events
Delete Events

Delete Events
Prebleed

Prebleed
Lockout

Lockout
Prime Pump

Prime Pump
Cycle Days

Cycle Days
Pump Type

Pump Type
Current State

Current State
Add Events
3.7 Biocide Events continued

Biocide ‘Add Events’

Press UP or DOWN until you see ‘Biocide’.
Press ENTER.

Press ENTER to Add an Event.

Press RIGHT to move the underline to the value you wish to change & then UP – DOWN to adjust.
Days 1,8,15 & 22 are Sundays on 28 Day Cycles.
Time is 24 hour format. 14:00 is 2:00PM.

After you’ve set the day and time you wish to start feeding and the volume you wish to feed;
Press ENTER to select event frequency.

Key UP – DOWN to select how often you wish to run the event.

28 Day Cycle offers Once, Weekly or Alternate Weeks.
7 Day Cycle offers Once, Daily or Alternate Days.
1 Day Cycle offers Once, Hourly or Alternate Hours.

Press ENTER to select frequency.
Displays revised total events. We started with 4 events, added a Weekly event & now have 8 events.

You can set up to 28 Biocide events.
This example turns ON the pump for 0.312 Gallons every Tuesday at 7:15 AM.
Biocide ‘Edit Events’

Press UP or DOWN until you see ‘Biocide’. Press ENTER & DOWN to Edit Events.

Press ENTER to view and edit current events.

Press UP – DOWN to select an event for editing. In this example, select 1 of 8 events.

Press ENTER on the selected event.

Press RIGHT to place the underline where you wish to adjust. Press UP – DOWN to adjust. This example changes the event start time from 6:00AM to 6:45AM.

Press ENTER to end or EXIT to make no changes. Setting a volume to 0, removes the event.

Sidebar: Events are re-sequenced by Day & Time whenever you Edit Events or Add Events. Keying UP in Edit Events displays the event sequence from Day 1 to Day 28.

Day 1 is always Sunday for 28 and 7 Day Cycles. The range of Day numbers changes as the Cycle Days changes from 1..28, 1..7 or 1.

If you change Cycle Days, all events are deleted.
3.7 Biocide Events

continued

Biocide ‘Prebleed’

Press UP or DOWN until you see ‘Biocide’. Press ENTER and then UP six times to Prebleed.

Press ENTER to view and edit Prebleed.

This example turns ON the bleed for 20 minutes before each biocide event. Prebleed ends if the tower conductivity falls below 650uS.

Press ENTER to adjust time or DOWN & ENTER to adjust conductivity. In this example, DOWN is pressed to adjust conductivity.

Press RIGHT to place the underline where you wish to adjust. Press UP – DOWN to adjust or EXIT to make no changes.

This example changes the Prebleed conductivity from 650uS to 600uS.

Sidebar: Prebleeding turns on the bleed solenoid before each biocide event to lower the tower conductivity. Prebleeding limits bleed and sewering of the biocide during the ‘kill time’

Biocides are usually fed during tower low thermal load so Prebleeding may not be required.

Prebleeding is also used to prevent overcycling during the Lockout period when the bleed is OFF.
3.7 Biocide Events continued

Biocide ‘Lockout’
Press UP or DOWN until you see ‘Biocide’.
Press ENTER and then UP five times to Lockout.
Press ENTER to view and edit Lockout time.
Press ENTER to edit or press EXIT.
Factory default Lockout is set to 0 minutes.
Press ENTER to adjust.
Press RIGHT to place the underline where you wish to adjust.
Press UP – DOWN to adjust or EXIT to make no changes.

Biocide ‘Cycle Days’
Press UP or DOWN until you see ‘Biocide’.
Press ENTER and then UP three times to Cycle Days.
Press ENTER to view and edit Cycle Days.
Press ENTER to edit or press EXIT.
Key UP – DOWN to select 28,7 or 1 day & then press ENTER.
Changing Cycle Days deletes existing events.
Biocide events repeat every 28, 7 or 1 day.

Sidebar: Lockout prevents the bleed solenoid from turning ON during the biocide ‘kill time’ and sewer ing the biocide.
Lockout is usually used with Prebleed to prevent tower overcycling during the Lockout period.

Non-Oxidizing biocides typically use a 28 or 7 Day cycle.
Oxidizing biocides typically use a 7 or 1 day cycle.
3.7 Biocide Events

continued

Biocide ‘Current State’

Press UP or DOWN until you see ‘Biocide’. Press ENTER & UP to Current State.

Press ENTER to view Current State.

If there are no Biocide feed events running, displays OFF.

If a Biocide feed event is running, counts down remaining volume.

Press ENTER to end event or EXIT to return to Current State

Biocide Day 4
OFF 1.236 Gal

then

Current State
Add Events

Biocide ?170
OFF OK

OR

Owes .079Gal
ON ENTER=Stop

Sidebar: Bleed Solenoid Prebleeding starts when an event is scheduled.

Biocide pump turns ON after Prebleed time ends.

Bleed Solenoid Lockout period starts when the biocide pump turns ON.

HELP: ?170 and other help numbers display wherever more explanation is available at online.
3.8 Selecting a Pump Type

Viewing the current Pump Type, Stroke Volume and Maximum Strokes/minute

Press ENTER at the Inhibitor Pump, Oxidant or DeChlor Pump or Biocide display and then UP two times until you view Pump Type.

Press ENTER to view the current Pump Type.
In this example it’s a Prominent 1001.
Press ENTER to change the Pump Type.

Press DOWN to the current ml/stroke setting.
Press ENTER to modify the mL/stroke.

Press DOWN to view the maximum strokes per minute for the current pump.
If the Pump Type is ‘Other Type’ you can press ENTER to set the maximum SPM.

Modifying the default mL/stroke

Press ENTER at ‘Pump Type’ then DOWN to the current mL/stroke display.

Press ENTER to modify the mL/stroke value.

Press RIGHT to place the underline where you wish to adjust.
Press UP – DOWN to adjust or EXIT to make no changes.

This example changes the mL/stroke from 0.19 to 0.162
The controller blocks mL/stroke settings >25% and <70% of the factory default to prevent accidental under or over feeds.

Sidebar: If you require more accuracy then the default mL/stoke setting. Prime for one minute from a graduated cylinder and correct the current mL/stroke for the measured volume at the feed stroke rate.
3.8 Selecting a Pump Type

Changing the Pump Type

Press ENTER at the Inhibitor Pump, Acid or Caustic Pump or Biocide display and then UP two times until you view Pump Type.

Press ENTER to change the Pump Type.

Selecting one of the six Prominent pumps
Sets the mL/stroke and maximum strokes/minute for the selected pump.

Setpoints and feed rates are checked to verify that the new pump can deliver the required volume.

If the selected pump is undersized, the feed rate is set to the maximum that the pump can deliver and an error message appears.

‘Other Type’ pumps can be any pump rated from 50 to 400 SPM that can be externally frequency controlled.

You’ll need to set the Maximum SPM and the mL/stroke for the actual pump.

Sidebar: Prominent pumps cannot be over-stroked. If you try to control over the rated SPM, you get the rated SPM.
‘Other Type’ pumps may stall if you set the Maximum SPM greater than the rated value for the pump.

The frequency control works like a ‘dry contact’ set which switches ON/OFF to frequency control the pump. At 400 SPM, the controller contacts will be closed for 75mS. At 1SPM the contacts will be closed for 30 seconds.

Whenever the frequency control contacts are closed the green monitoring LED will be ON. Although the actual contacts are electronic, you can think of them as a contact set, since they work with any polarity of control signal.
3.8 Selecting a Pump Type
continued

Changing Maximum Stroke Rate

Press ENTER at the Inhibitor Pump, Acid or Caustic Pump or Biocide display and then UP two times until you view Pump Type.

Maximum SPM can only be changed for ‘Other Type’ pumps.

Press DOWN until you view Rated SPM & press ENTER

Press RIGHT to place the underline where you wish to adjust.
Press UP – DOWN to adjust or EXIT to make no changes

In this example we have changed the Maximum rated Stroke per minute from 100 SPM to 120 SPM.

Sidebar: Prominent pumps cannot be over-stroked. If you try to control over the rated SPM, you get the rated SPM.

‘Other Type’ pumps may stall if you set the Maximum SPM greater than the rated value for the pump.

The controller checks the feed setpoints when you change the mL/stroke or Maximum SPM, modifying setpoints if necessary. If the new mL/stroke or Maximum SPM causes a feed rate to be limited, an error message is displayed.
3.9 System- Alarms

System Menu Options

Press UP or DOWN until you see Day & Time
Press ENTER view System options.

Press ENTER to view Current State
Controller diagnostics

Press ENTER to view and adjust clock.

Press ENTER to stop inhibitor feed
during either a Biocide feed event.

Press ENTER to view or change
US or Metric units.

Press ENTER to view or switch between
OXIDANT and DECHLOR control
The next menu item will display ‘DeChlor Pump’ if you have
selected DeChlor Control

Press ENTER to view Feed Limit action at midnight
The Feed Limit may be reset at midnight.
Feed Limits that are not reset, require a user reset.

Press ENTER to turn ON the user password.
If PASSWORD on, press ENTER for password tools.

The 4-20mA output may represent either the conductivity or
ORP sensor. Press ENTER to view or change.

Sidebar: WARNING Midnight Feed Limit reset: The default does not reset the feed limit at midnight. If you reset every midnight, you may feed the limit volume every feed cycle which may damage site structures. Feed Limit alarms indicate that corrective action is required.
3.9 System- Alarms continued

Alarms

Press UP - DOWN until you see Alarms
The first alarm to trip will display or 'none' if no alarms

Press ENTER to Clear Alarms.
Clearing alarms sets pump owed volumes & solenoid owed times to zero.

Sensor Alarms, ‘Out-of-Calibration’ and System Alarms auto-clear when the fault is corrected

Sidebar
Only the highest priority alarm displays to direct maintenance action to the most critical fault. When you correct the cause of the highest priority alarm, a lower priority alarm will display.

Alarms are displayed in the following priority:

1: ORP sensor, Alarms or Fail-to-Calibrate
2: Conductivity sensor, Alarms or Fail-to-Calibrate
3: Oxidant or DeChlor Pump volume limit
4: Inhibitor pump volume limit
5: Temperature sensor fault
6: Turbine meter & 4-20mA power fused,
7: Internal power supply fault
8: Internal clock fault.
3.9 System- Alarms

System: Current State

Press UP or DOWN until you see Day & Time
Press ENTER view System options.

Press ENTER to view the Current State, Controller diagnostics

Temperature at the conductivity sensor. Press ENTER to adjust.
Displays 'Fault' if not used to compensate conductivity, Indicates wiring or sensor problem.

Power used for flowswitch, paddlewheel water meters and to power 4-20mA current loops
Alarms on short circuits, recovers when wiring corrected.

Internal power used or bleed solenoid. Always 11.7 to 12.3. Alarms on fault.

Conductivity sensor drive, 70-80mV or 950–1050mV as sensor drive auto-ranges.
Alarms and cannot measure conductivity if out of range.

pH-ORP sensor offset, 2475 to 2525mV
Alarms and cannot measure any sensors if out of range.

Internal diagnostic. Displays Firmware version
Checks that user setpoints being saved & that the Clocks are operating,

Sidebar: System: Current State verifies the controller operation & alerts you to wiring problems with conductivity temperature, paddlewheel water meters and controller powered 4-20mA current loops.
3.9 System- Alarms continued

System: Adjust Clock

Press UP - DOWN until you see Day & Time
Press ENTER & DOWN to Adjust Clock.
Press ENTER to view or adjust current Date & Time.
Press EXIT to leave changed or RIGHT to move the underline.
Press UP – DOWN to EDIT.

After ENTER, press UP-DOWN to select day of the week.

Day of the week is important for Biocide events which use Sunday as Day 1.

System: Stop Inhibitor

Press UP - DOWN until you see Day & Time
Press ENTER & DOWN to Stop Inhibitor.
Press ENTER to view or adjust current Inhibitor feed sequence.

'No Bioblock' is the Factory Default.
'Biofeed Blocks' stops the Inhibitor Pump whenever the Biocide pump is ON.

Sidebar: Sites where Biocides are fed into the same sample-feed piping as the Inhibitor may cause jelling or inhibitor degradation.

Blocking the inhibitor pump prevents product mixing in the sample-feed piping during Biocide feed events.
3.9 System- Alarms
continued

System: Select Units

Press UP or DOWN until you see Day & Time
Press ENTER and then DOWN three times to Select Units

Press ENTER to view or adjust current Select Units.

Press EXIT to leave changed or DOWN to change.

Key ENTER to:
Set to U.S. units, degrees Fahrenheit & Gallons or
Set to Metric, degrees Centigrade & Liters

System: Adjust Temperature

Press UP - DOWN until you see Day & Time
Press ENTER twice to adjust Temperature

Press UP – DOWN to EDIT or RIGHT to move the underline
Press EXIT to leave changed or ENTER to change the temperature

A Temperature displaying Fault cannot be adjusted.

Temperature cannot be adjusted more than +/-18F or +/-10C from the factory default.
Press EXIT on this message to return to Temperature factory default setting.

Sidebar: Select Units changes make-up meter units, year-to-date units, volume fed and volume per contact units.

Temperature compensation of conductivity, switches automatically between C & F as does the System:Current State display of temperature.

NOTE: If you adjust the Temperature, you’ll need to re-calibrate conductivity
ProMtrac Model: PR/CO-IN-OX-TB

ProMtrac: Water Treatment Controller

3.10 Password

Turning ON Password

Password is turned OFF in new controllers

Press UP or DOWN until you see Day & Time

Press ENTER & UP to select Password ON

If you press ENTER you’ll be prompted for a password the next time you press ENTER.

Press UP or DOWN to view the current state of the controller.

Any ENTER key will prompt for the password, displaying the default password 123.

Use the UP, DOWN & RIGHT keys to enter a password then key ENTER.

A correct password displays, Password OK.
Press any key to start operating the controller.

Sidebar: When you first select Password ON, the default password is 123.
Whenever you Enter Password the controller displays the default password. If you have not changed the default password, press ENTER to log in.
3.10 Password
continued

Press UP or DOWN until you see Day & Time. Then press ENTER & UP to view Password tools.

Password tools are available when Password is ON and you are logged in. Press ENTER to view the tools:

Press ENTER to Log Out.
If you forget to Log Out, the controller logs you out 30 minutes after the last key press.

Press DOWN & then ENTER to view & change the current password

Press DOWN to Password OFF. Pressing ENTER turns OFF PASSWORD.

Press RIGHT & UP – DOWN to change the current password. ENTER changes the password. Press EXIT to leave the password unchanged.

Sidebar: If your controller is password protected. Select Edit Password and change the password from the ‘123’ factory default.

Passwords may be from 1 to 6 numbers. Leading zeros are ignored.

If you forget your password, you’ll require the controller serial number to get a Reset Password. The controller password is ‘123’ after you key in the Reset Password.

If you forget to ‘Log Out’ of a password protected controller, Log Out occurs automatically after 30 minutes with no key pressed.
4. MAINTENANCE

4.1 Guidelines

Modify the maintenance guidelines to reflect both the site priorities and the site water treatment program. Guidelines are for controller function only. Water treatment program maintenance requirements are provided by the site water treatment provider.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Activity</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Check for Alarms.</td>
<td>Identify and correct the cause of alarms on sensors and pumps. Make-up water or Pump rate & stroke may have changed. Higher temperatures may be increasing inhibitor daily volume. Debris may have partially blocked the bleed line.</td>
</tr>
<tr>
<td></td>
<td>Scan Sensors, Make-up Meter & Flowswitch</td>
<td>A high conductivity may indicate a blocked or failed bleed solenoid. A low conductivity may indicate an overflowing tower basin or a scheduled Prebleed before a biocide feed.</td>
</tr>
<tr>
<td></td>
<td>Note ON time for Solenoids & Volume fed for Pumps</td>
<td>A low ORP may indicate a gas blocked pump, a pot feeder out of pucks or a pump timed out on feed limit. A high ORP may indicate a siphoning pump or a fouled ORP sensor. If there’s a make-up meter, you’d expect daily volume to increase with temperature. High make-up may indicate a stuck make-up float. No make-up may indicate a valved-off or faulted meter & a cause of low run time on the inhibitor pump.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the tower recirculation pump is ON, verify that the Flowswitch shows ON. If you check at the same time every day you would expect the bleed solenoid ON time & Inhibitor volume fed to vary only with temperature. No Bleed solenoid ON time may indicate a fouled conductivity sensor. Typical cooling towers bleed no more than 40% of the time and feed 5-10% of the time. At noon you’d expect to see 100 to 200 minutes of bleed & 40-50% of the daily inhibitor volume. If this morning was a biocide feed day, verify that the Biocide daily volume shows the feed event volume.</td>
</tr>
<tr>
<td>Frequency</td>
<td>Activity</td>
<td>Method</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Weekly</td>
<td>Verify Conductivity</td>
<td>Sample the tower water conductivity. Verify controller matches the sample +/-25uS Conductivity sensors should not drift or require cleaning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scaling sensors may indicate a restricted bleed, varying make-up hardness, incorrect setpoints or water treatment program.</td>
</tr>
<tr>
<td></td>
<td>Verify ORP</td>
<td>Verify controller ORP matches sample ORP +/-10mV. If you can wipe the ORP sensor and it reads correctly, increase the flow rate in the sample line.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High levels of copper or iron contaminate the ORP sensor.</td>
</tr>
<tr>
<td></td>
<td>Note Make-up Volume</td>
<td>Weekly water usage indicates both average tower load and maximum daily temperature. High water usage may result from a change in controller setpoints or a leak or overflow in the cooling water system.</td>
</tr>
<tr>
<td></td>
<td>Verify Flowswitch</td>
<td>Close the upstream sample line isolation valve then the downstream valve wait 30 seconds & verify that the Flowswitch displays OFF.</td>
</tr>
<tr>
<td></td>
<td>‘Y’ Strainer Filter</td>
<td>If the sample line has a ‘Y’ strainer, clean the filter to prevent an unplanned ‘no flow’ outage. Note that ‘Y’ strainers are not required when using the controller’s non-mechanical flowswitch.</td>
</tr>
<tr>
<td></td>
<td>System Check</td>
<td>Open the downstream, then the upstream valve and verify that the Flowswitch displays ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visually inspect sample-injection piping for leaking fittings, feed injection points and sensor entries.</td>
</tr>
</tbody>
</table>

Sidebar: Maintenance Guidelines for water treatment are set by the chemical treatment program vendor.
## Frequency	Activity	Method
Yearly	ORP Sensor	The service life of an ORP sensor is reduced by extreme temperature swings and frequent removal for calibration-cleaning. Incorrect sample line isolation valve sequencing stresses the sensor seal & shortens sensor life. Replace the ORP sensor annually.
Calibrate Conductivity Tester	Verify the conductivity tester annually with a calibration solution using a solution that's as close as possible to the controller conductivity setpoints. Replace outdated calibration solutions.	
Replace ORP test solutions. Verify ORP tester	I If you are using ORP calibration solutions, replace outdated solutions. If you are using an ORP tester, re-calibrate it using a test solution.	
Observe a Bleed Control Cycle	Observe as the tower cycles up and the conductivity exceeds the Turn ON setpoint. Observe the unobstructed flow from the bleed line, if it's visible.	
	Note the conductivity when the float opens the make-up line. Verify that the bleed solenoid shuts off flow when the conductivity falls below the lower setpoint.	
	Note the conductivity when the float closes the make-up line. Verify that the difference between Make-up ON & OFF conductivities is greater than the difference between Setpoint TurnON & TurnOFF conductivities.	
	Optimal control occurs when the bleed setpoint deadband (TurnON – TurnOFF) in less than the make-up float ON-OFF conductivity difference.	
Verify Water Meter	If a make-up water meter is installed, verify that the controller measures an increase in make-up volume while the make-up float opens the make-up line.	
	Is the expected volume measured for the size of the line and the float ON time? If not, the meter Volume/Contact or ‘K’ factor may have been set incorrectly or the water meter may have been cabled in a common conduit with AC power.	
## Frequency	Activity	Method
Yearly | Observe an Oxidant or DeChlor Feed Cycle. (This may take some time, but it’s worth doing whenever you make changes to setpoints or when make-up chemistry changes) | Observe the slow fall of ORP as the residual oxidant reacts with the biological load or is lost over the top of the tower. **Note the time when the Oxidant pump turns ON.** Initially there may be little or no ORP response as oxidant is fed particularly if the biological load is high. The ORP will increase once oxidant is no longer required to react with the tower biological load. **Note the elapsed time when the Oxidant pump turns OFF.**

If you are not legally required to maintain a specified free oxidant level, ORP setpoints trade biological control for corrosivity. Cooling water systems with yellow metal exchanger tubing and/or galvanized towers usually minimize the free oxidant level to limit corrosion.

Unlike conductivity control, optimal ORP control is not easily defined since it incorporates water treatment program objectives and may involve interaction with an organic biocide.

If the water treatment program requires a constant residual oxidant level, adjust the ORP setpoints for 10mV to 20mV between 100%ON & TurnOFF. You’ll see many short feed cycles or a continuous, varying feed while the tower is on-line.

If the water treatment program requires an interval of very high residual (slug feeding) level, adjust the ORP setpoints for 50-75mV between 100%ON & TurnOFF. You may see a single daily feed cycle or perhaps a feed cycle every other day.

The relationship between ORP and available oxidant is indirect & varies from site-to-site. However if a sample of cooling water has 0.5ppm of free Chlorine and the ORP measures 325mV, then setting the controller to TurnOFF oxidant at 325mV and 100%ON at 305mV will maintain 0.5ppm of free Chlorine.

If you change the bleed setpoints, therefore it’s pH; you’ll need to adjust the Oxidant pump setpoints.
4.1 Spare Parts

4.1.1 Line Fuse

<table>
<thead>
<tr>
<th>Protects</th>
<th>Rating / Type</th>
<th>Manufacturer – Vendor</th>
</tr>
</thead>
</table>
| Controller, and Bleed Solenoid| 5 Amps @ 115VAC, 2 Amps @ 230VAC, 5mm x 20mm, Fast Acting | Littlefuse, Type 217, 250VAC
Digikey Part# F953-ND
Digikey Part# F950-ND
www.digikey.com 1-800-344-4539 |

4.1.2 Controller Parts

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProMinent Part#</td>
<td>Replacement ORP sensor</td>
</tr>
<tr>
<td>SFuse</td>
<td>120VAC Fuse Kit, 10 x 5A Controller Fuses,</td>
</tr>
<tr>
<td>CTF</td>
<td>Conductivity-Temperature-Flowswitch sensor</td>
</tr>
<tr>
<td>CTF-Entry</td>
<td>Conductivity entry fitting for PVC ¾” NPT ‘T’ fitting</td>
</tr>
<tr>
<td>PR/CO-IN-OX-TB-NS</td>
<td>Spare Controller without sensors & entry fittings</td>
</tr>
<tr>
<td>R171230</td>
<td>Enclosure Power cable entry fitting, PG11</td>
</tr>
<tr>
<td>R717231</td>
<td>Enclosure Sensor cable entry fitting, PG9</td>
</tr>
</tbody>
</table>

On-Line Help

Browse to www.///////////.com/help with the 3 digit HELP#’ from the controller LCD display. LCD display HELP numbers are preceded by ‘?’

Users Manual

Download PRCX_User from www.///////////.com

<table>
<thead>
<tr>
<th>Manual Version</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/06</td>
<td>Initial release with integrated Conductivity-Temperature-Flowswitch sensor.</td>
</tr>
</tbody>
</table>
Appendix A: INSTALL

A.1 PLUMBING

Typical sample-chemical injection piping operates at 40-60psi and is plumbed in SCH80 PVC. Sample piping is usually fed from the discharge side of the re-circulation pump, returning to either the suction side of the pump or to the tower basin. Ensure that the sample piping flow exceeds 1 GPM and that the sample stream represents the tower water.

Avoid sample piping which drains whenever the tower is off-line. Solids will accumulate on the sensors requiring re-calibration and cleaning. A backcheck may be required at some sites to prevent reverse flow through the injection-sensor piping when the recirculation pump is OFF.

‘Y’ strainers in the sample loop are not recommended. Strainer filters are usually the first location to plug, turning OFF pumps and the bleed solenoid on no flow.

NEW CONSTRUCTION: After pressure testing, valve OFF the sample piping during post-construction re-circulation piping cleaning and passivation.

A.2 SENSORS

Conductivity sensors may be installed in any orientation which allows them to be removed for cleaning. Do not hang conductivity sensors in metallic tower sumps. ORP sensors must be installed vertically, tip down to prevent air blocking of the reference junction.

Water meter and sensor wiring cannot be installed in the same conduit as 120VAC power, pump or solenoid wiring. Even a short section of shared conduit may cause operational problems. Conductivity, ORP, flowswitch and water meter sensor wires may be extended up to 100 feet using multiple pair AWG22 cable. Always splice sensor wires in an electrical fitting to allow both inspection and sensor replacement. Extend the conductivity sensor using the same colors as the sensor to avoid wiring errors at the controller terminals. Contact head water meters and mechanical flowswitches are not polarized, simplifying cable extension.

CAUTION: Three wire turbine-paddlewheel meters are polarity sensitive and can be permanently damaged by miswiring. Wait until you are ready to start-up the controller before connecting this type of meter to the controller. Meter wiring errors are easily detected and corrected at start-up.

A.3 CHEMICAL INJECTION

Inject water treatment chemicals downstream of sensors as recommended by the chemical supplier. Do not inject acid, bleach or other oxidants upstream of a recirculating pump or condenser – heat exchanger.
ProMtrac Model : PR/CO-IN-OX-TB

ProMtrac: Water Treatment Controller

A.4 BLEED LOCATION
The optimum bleed solenoid location is after the condenser – heat exchanger. Never install the bleed on the sample line, upstream of the sensors and flowswitch. If you are installing a bleed solenoid on the tower sump, ensure that the head or pressure at the bleed solenoid is sufficient to operate the solenoid. Verify that the solenoid is sized for the maximum tower load at the target cycles, on the hottest day of summer. If the bleed is on for more than 50% of the time, inhibitor feed options will be limited.

A.5 MAKE-UP METER
Ensure that the meter manufacturer’s recommendations for orientation and upstream and downstream piping are observed. Orientation may be limited for contact head meters, while straight upstream and downstream piping is required to prevent errors in turbine-paddlewheel meters. Contact head meters have a Gallon/Contact or Liter/Contact rating. In some meters this value can be altered by moving magnets or gears. Typical meters are rated 10, 50 & 100 Gallons/contact.
Turbine-Paddlewheel meters have a ‘K’ Factor which is the number of pulses / Gallon or pulses/Liter. Some manufacturers have both nominal values listed by meter size and calibration values on the meter body.
Take the time to get the meter volume/contact or ‘K’ factor correct, since most meters are used to control inhibitor feed and inhibitor ppm errors result when meters are incorrectly configured.

A.6 CONTROLLER ENCLOSURE
The optimum location for sensors, controller, chemical pumps and drums is as close together as access allows. You’ll be able to see where all the wires, plugs and tubing goes, watch pumps turn ON as you prime, grab samples to calibrate sensors… If you have the space; sample piping on the left, pumps & drums on the right with the controller in the middle.
Wall mount the controller enclosure at eye height for a 5’ to 5’6” person so that an operator does not have to reach over drums or pumps to use the controller keypad.

In areas with daily ambient temperatures over 100F, 40C, locate the controller out of direct sunlight or beneath a sunshade. Internal temperatures over 115F, 45C will degrade the controller display.
Do not punch conduit access holes in the top of the enclosure to avoid condensation damage to the controller electronics.
Plug the controller into an ‘Always ON’ utility outlet. Maximum controller current @ 120VAC is 5 Amps.
Appendix B: SPECIFICATIONS
Each controller includes an option card slot.
Auto re-configuration occurs on installation of one of LAN, 4-20mA Output OR Alarm Relay option card.

<table>
<thead>
<tr>
<th>Analog – Digital I/O</th>
<th>Rating - Detail</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity Flowswitch Sensor</td>
<td>1 Temperature Compensated conductivity sensor. Displays 1uS resolution. Rated 100psi, 35-120F, 2-50C Flowswitch switches @ 1GPM</td>
<td>Conductivity autoranging from 100uS to 10000uS. Flowswitch, Max. 30 second ON-OFF & OFF-ON response over rated temperature.</td>
</tr>
<tr>
<td>Water Meter</td>
<td>Water Meter, 400 Hz max 0.5mA @ 5VDC measurement current</td>
<td>Contact head meter software debounced. Turbine-Paddle wheel rating = Seametrics max pulse rate.</td>
</tr>
<tr>
<td>Bleed Relay Output</td>
<td>1 SPST</td>
<td>Relay rated 10A, 120VAC Controller fused @ 5 Amps</td>
</tr>
<tr>
<td>Pump Frequency Control</td>
<td>3 Optically isolated analog switches for pumps rated from 50 to 400 Maximum SPM. Frequency controlled from less than 1 stroke/hour to rated SPM. Pulse ON time @ 50% of pulse period. Example: 120SPM ON for 1/4 sec. & OFF for 1/4 sec.</td>
<td>Current limited @ 500 ohms in series with each switch. Monitoring LED period set @ 50% of pulse period. User selected Prominent pump type auto sets MAX. SPM and nominal mL/stroke @ 40psi.</td>
</tr>
<tr>
<td>4-20 ma Output on conductivity or ORP ('CL’ optional card)</td>
<td>1, DC isolated, loop powered. Nominal 0.1% resolution. Auto polarity correction field wiring. Current loop goes to 4mA on no flow for proportional control applications.</td>
<td>Alarms on open loop. 4mA on 'no flow' Auto-configure on card installation and removal. Software calibration @ 4 & 20mA</td>
</tr>
<tr>
<td>Alarm Relay ('AR’ optional card)</td>
<td>Dry contact set. Rated 500mA @ 24VDC</td>
<td>Closed in the non-alarmed state. Contact set opens on alarm or loss of controller power.</td>
</tr>
</tbody>
</table>
ProMtrac: Water Treatment Controller

<table>
<thead>
<tr>
<th>Communications User Interface</th>
<th>Rating – Detail</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad - LCD</td>
<td>5 Key Tactile feedback: UP / DOWN / ENTER / EXIT / RIGHT 2 Line x 16 Character, Backlit</td>
<td>Scan rate 100mS nominal User adjustable LCD contrast</td>
</tr>
<tr>
<td>Browser ('LB' optional card)</td>
<td>10BaseT Ethernet RJ45 Jack Full command & control via browser. XML real time controller data</td>
<td>Static IP. Fixed MAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controls</th>
<th>Rating - Detail</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleed Solenoid</td>
<td>Controls: Conductivity, Water Meter & Percentage Time.</td>
<td>Percentage Time bleed stops on no flow.</td>
</tr>
<tr>
<td>Inhibitor Pump</td>
<td>Controls: Bleed & Feed, Bleed then Feed, Feed on Volume & Base Feed Daily feed volume limit.</td>
<td>User sets feed rate in mL/minute in all modes but Feed on Volume. User sets ppm when Feed on Volume selected. User selected block on Biocide feed. Base Feed stops on no flow. Feed on Volume blocked during bleed.</td>
</tr>
<tr>
<td>Oxidant Pump Or DeChlor Pump</td>
<td>Controls: ORP & Base Feed. Feed volume limit on pump period at rated SPM.</td>
<td>User selected reset of feed limit timeout at midnight.</td>
</tr>
<tr>
<td>Biocide (Timed Events)</td>
<td>28 Events in a cycle. 1 minute resolution Lockout, Prebleed on both time and conductivity.</td>
<td>User sets volume fed during each event. User selected 1,7 or 28 day cycle.</td>
</tr>
<tr>
<td>Thermal Flowswitch</td>
<td>Bleed Solenoid & Pumps OFF when no flow.</td>
<td>CTF sensor combines Conductivity-Temperature-Flowswitch in one sensor. Flowswitch trips at 1GPM within 30 seconds.</td>
</tr>
</tbody>
</table>
ProMtrac: Water Treatment Controller

#### System	Rating - Detail	Notes
Controller Configuration | User settings and biocide events written on silicon. | Makes current configuration factory default.
Clock | Battery backed, 5 years of normal usage. | CR2032 clock battery available at Radio Shack.

#### Electrical	Rating - Detail	Notes
AC Input | 115 or 230 VAC, 50/60Hz, Switch selectable |
Fusing | 5 Amps @ 115VAC
2 Amps @ 230VAC | 5x20mm type fuse.
Surge-Spike Suppression | Bleed solenoid relay contacts snubbed 0.1uF, 150R
Varistor on AC power input | Controller electronics transformer isolated from AC line
AC Power Terminals | AC Input & Output : maximum. Stranded AWG 14, 150mm² |
Sensor, Digital Input, Pump Frequency Control Terminals | AWG 22, 0.25 – 0.50mm² |
Flowswitch Power Paddlewheel Meter Power 4-20mA output loop power | 14 – 20 VDC, unregulated Thermally fused @ 50mA | 4-20mA output option can be powered by load or by controller

#### Mechanical	Rating	Notes
Enclosure | Non-metallic, NEMA4X, IP65
7”W x 6”H x 4”D
180mm W x 150mm H x 100mm D | Nominal dimensions, excluding cable entry fittings.
Allow 12”, on right for bleed cabling plug-n.
Allow 18”, below for cable-conduit access.
Appendix C: HARDWIRING

AC power and bleed solenoid power may be hardwired to the controller terminal blocks as shown in the following graphic.

HARDWIRING REQUIREMENTS:

1. Do not exceed AWG14 for AC power wiring.

2. The Bleed Solenoid output is fused at 5 amps at 120VAC. AC wiring must be minimum AWG18, rated 300V.

3. Use multiple strand, copper AC power wiring. Do not use solid conductors.

4. RED-RED solenoid wiring typical for ASCO type solenoids.
Appendix D: 'CL' 4-20mA Output Option
The optional 4-20mA output on conductivity or pH is DC isolated from the controller & may be either powered by the load or by the controller DC supply. The 4-20mA output is auto-polarity correcting & detects an open or unpowered loop.

D1. WIRING

LOAD POWERED 4-20mA Output
- The Monitoring or Distributed Control system powers the controller current loop with 18-24VDC and reads controller conductivity.
- Terminate current loop at DCS input with 50 to 250 ohms.
- Controller alarms when monitoring current loop disconnected.

CONTROLLER POWERED 4-20mA Output
- The Controller powers the current loop output used to control the pump or valve on conductivity.
- +15V Controller Supply Thermally fused at 100 ma to protect Controller and Pump.
Appendix D: ‘CL’ 4-20mA Output Option

D.2 VIEW & ADJUST SPAN

The displayed value of the 4-20mA loop current depends on both the conductivity or ORP and the Span. Refer to Section 3.9 System-Alarms for uS – ORP select.

If the current loop output is disconnected you’ll see this display in place of the mA level.

If the flowswitch is OFF, the conductivity & ORP are invalid and you’ll see this display, which is necessary if you are controlling a proportional valve or pump or alarming on no flow.

Press ENTER @ Select Span to view or adjust the Span. Span sets the conductivity or ORP at 4mA & at 20mA.

Press ENTER @ Trim Zero to calibrate the 4mA level.

Press ENTER @ Trim Span to calibrate the 20mA level.

View & Adjust Span

Press ENTER @ 4-20mA Output & then DOWN to Select Span. Press ENTER.

Displays current Span. Press ENTER to adjust 4mA level or DOWN & ENTER to adjust 20mA level. (Displays ORP span if 4-20mA = ORP.)

Press RIGHT to place the underline under the digit you wish to adjust. Press UP – DOWN to adjust.

ENTER updates the Span. EXIT leaves Span unchanged.
Appendix D: ‘CL’ 4-20mA Output Option

D.3 CALIBRATE

Calibration is seldom necessary & is used to correct to offset errors.
The range of Zero & Span adjustment is limited.
If you are not able to calibrate:
A: Verify your milli-ammeter B: If Load Powered, verify you have at least 15VDC available.

- Press ENTER & then DOWN at 4-20mA Output
 - 4-20mA Output
 - 15.4mA
 - AND
 - Trim Zero
 - Trim Span

- Connect a DC milli-ammeter in series with either of the current loop wires.
 - Trim Zero
 - ?201
 - now 4mA
 - 6

- Press UP or DOWN until you read 4mA on the milli-ammeter.
 - 4-20mA Output
 - 15.2mA

- Press ENTER to view the output current and verify that the milli-ammeter reads the same current.

- Press ENTER & then DOWN at 4-20mA Output
 - 4-20mA Output
 - 15.4mA
 - AND
 - Trim Span
 - Select Span

- Connect a DC milli-ammeter in series with either of the current loop wires.
 - Trim Span
 - ?202
 - now 20mA
 - 91

- Press UP or DOWN until you read 20mA on the milli-ammeter.
 - 4-20mA Output
 - 15.2mA

- Press ENTER to view the output current and verify that the milli-ammeter reads the same current.
Appendix E: ‘AR’ Alarm Relay Option

E.1 WIRING ALARM CONTACTS
Alarm contacts rated 500mA at 24VDC.
Requires optional Alarm Relay Card

E.2 ALARM DISPLAYS

Press UP - DOWN until you see Alarms
If the Alarm Relay Card is installed you’ll see one of the following displays.
If Alarms & ‘none’ then the alarm contacts will be closed
Alarm contacts open on alarm.
This display verifies the contact set state measured at the Building Automation System input terminals.

Wire alarm contacts AWG22 to AWG18, 2 conductor
Appendix F: ‘LB’ LAN - Browser Option

Download for ProMtrac_LB.pdf browser manual for the on-line support site.

Do not connect the controller to the site LAN without permission and an IP address from the site IT staff.

You can use a crossover cable to connect to your notebook PC to view the controller state. Information on browsing controllers is available in the ProMtrac_LB manual.

Cooling Tower Controls
2008-04-09 12:43:19
Alarms: none
Alarms,Events and Timers: Reset All
Part No.: COIN40X-TB
Serial Number: P406XF802
Click a link in the View to operate the controller
Setup: Configure
Submit: Refresh