Operating Instructions
DULCOMETER® D1C
Part 2: Adjustment and Operation,
Measured Variable Standard Signal

Please completely read through operating instructions! · Do not discard!
The warranty shall be invalidated by damage caused by operating errors!

Please enter the identity code of your device here!

D1C A ________________________________

Part no. 987528 ProMinent Dosiertechnik GmbH · D-69123 Heidelberg · Germany BA DM 140 10/06 GB
D1C A DULCOMETER® Controller Series D1C / Version A

<table>
<thead>
<tr>
<th>Type of mounting</th>
<th>D</th>
<th>Control panel installation 96 x 96 mm</th>
<th>W</th>
<th>Wall mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>0</td>
<td>230 V 50/60 Hz</td>
<td>1</td>
<td>115 V 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200 V 50/60 Hz (only with panel installation)</td>
<td>3</td>
<td>100 V 50/60 Hz (only with panel installation)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24 V AC/DC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured variable

- S Standard signal 0/4-20 mA

Connection of measured variable

- 1 Terminal standard signal 0/4-20 mA

Correction variable

- 0 None

Feed forward control

- 0 None
- 1 As standard signal 0/4-20 mA
- 2 As frequency 0-500 Hz
- 3 As frequency 0-10 Hz

Control input

- 0 None
- 1 Pause

Signal output

- 0 None
- 1 Standard signal 0/4-20 mA measured value
- 2 Standard signal 0/4-20 mA control variable
- 4 2 standard signal 0/4-20 mA outputs, free programmable

Power control

- G Alarm and 2 limit value/timer relays
- M Alarm and 2 solenoid valve relays
- R Alarm relay and servomotor with feedback

Pump control

- 0 None
- 2 Two pumps

Control characteristics

- 0 None
- 1 Proportional control
- 2 PID control

Log output

- 0 None

Language

- D German
- E English
- F French
- I Italian
- N Dutch
- S Spanish
- P Polish
- A Swedish
- B Portuguese
- U Hungarian
- G Czech

Please enter the identity code of your device here!
2 General User Information

These operating instructions describe the technical data and function of the series DULCOMETER® D1C controller, provide detailed safety information and are divided into clear steps.

IMPORTANT

- Please observe the parts of these operating instructions applicable to your particular version! This is indicated in the Section “Device Identification / Identity Code”!
- Correct measuring and metering is only possible in the case of impeccable operation of the sensor. The sensor has to be calibrated / checked regularly!

NOTE

A form “Documentation of controller settings type D1C” is available under www.prominent.com/documentation_D1C for the purpose of documenting the controller settings.

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Device Identification / Identity Code</td>
</tr>
<tr>
<td>3</td>
<td>General User Information</td>
</tr>
<tr>
<td>4</td>
<td>Device Overview / Controls</td>
</tr>
<tr>
<td>5</td>
<td>Functional Description</td>
</tr>
<tr>
<td>6</td>
<td>Display Symbols</td>
</tr>
<tr>
<td>7</td>
<td>Operation diagram</td>
</tr>
<tr>
<td>8</td>
<td>Restricted Operating Menu</td>
</tr>
<tr>
<td>9</td>
<td>Complete Operating Menu</td>
</tr>
<tr>
<td>10</td>
<td>Faults/Notes/Troubleshooting</td>
</tr>
</tbody>
</table>

General User Information

These operating instructions describe the technical data and function of the series DULCOMETER® D1C controller, provide detailed safety information and are divided into clear steps.

IMPORTANT

- Please observe the parts of these operating instructions applicable to your particular version! This is indicated in the Section “Device Identification / Identity Code”!
- Correct measuring and metering is only possible in the case of impeccable operation of the sensor. The sensor has to be calibrated / checked regularly!

NOTE

A form “Documentation of controller settings type D1C” is available under www.prominent.com/documentation_D1C for the purpose of documenting the controller settings.

3 Device Overview / Controls

CHANGE button
To change over within a menu level and to change from one variable to another within a menu point.

START/STOP button
Start/stop of control and metering function.

ENTER button
To accept, confirm or save a displayed value or status. For alarm acknowledgement.

UP button
To increase a displayed numerical value and to change variables (flashing display)

BRANCH BACK button
Back to permanent display or start of relevant setting menu.

DOWN button
To decrease a displayed numerical value and to change variables (flashing display).
4 Functional Description

NOTE
Please refer to the description of the complete operating menu in Section 8 for a detailed description of the individual characteristics of the D1C controller!

4.1 Operating Menu
The DULCOMETER® D1C controller permits settings to be made in two different menus – a “complete” and a “restricted” menu. All values are preset and can be changed in the complete operating menu.

The controller is delivered with a restricted operating menu so that the D1C controller can be used effectively in many applications from the very onset. If adaptations prove to be necessary, all relevant parameters can then be accessed by switching over to the complete operating menu (see “General settings”).

4.2 Access Code
Access to the setting menu can be prevented by setting up an access code. The D1C controller is supplied with the access code 5000 which permits free access to the setting menu. The calibration menu remains freely accessible even if access to the setting menu is blocked by the code.

4.3 Control
The D1C can operate as a proportional controller or as a PID controller - depending on the device version (see identity code) and the setting.

The controlled variable is recalculated once a second. Control procedures which require rapid correction of setpoint deviations (less than approx. 30 seconds) cannot be processed with this controller. The cycle times must be taken into consideration when activating solenoid valves (pulse length) in the same way as their running times when activating servomotors (3-point).

Via the control input pause, the control function (selection of controlled variable) can be switched off. The calculation of the controlled variable starts again after cessation of "pause".

4.4 Feed Forward Control
The D1C controller can process a signal of a feed forward control. Depending on the device version (see identity code) and the setting, this signal can be obtained in any form of a 0–20 mA or 4–20 mA signal or as a digital contact signal with the maximum frequencies 10 Hz or 500 Hz.

This signal can be used, for example, for flow-proportional metering (multiplicative effect) or feedforward-dependent basic load metering (additive effect). The result of control variable calculation from the proportional or PID control is multiplied by or added to the feedforward signal. A multiplicative feedforward variable at the level of the set rated value carries over the calculated control variable unchanged into the controlled variable:

\[\text{Controlled variable} = \frac{\text{Feedforward variable/rated value}}{x \text{ calculated control variable}} \]

During start-up, the zero point has to be checked. The multiplicative feed forward control is not designed for switching off permanently the actuating variable (signal \(\approx 0 \)).

An additive feedforward variable at the level of the rated value results in maximum controlled variable:

\[\text{Controlled variable (max. 100 %)} = \frac{\text{Feedforward variable/rated value}}{x \text{ max. controlled variable} + \text{calculated control variable}} \]

4.5 Error Messages
Error messages and information are indicated on the bottom line in the permanent display 1. Errors to be acknowledged (acknowledgement switches off the alarm relay) are indicated by the “”. Errors/notes which still apply after acknowledgement are indicated alternately. Faults which are rectified of their own accord due to changed operating situations are removed from the permanent display without the need for acknowledgement.
5 Display Symbols

The display of the DULCOMETER® D1C controller uses the following symbols:

<table>
<thead>
<tr>
<th>Description</th>
<th>Comment</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit value transgression</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Relay 1, upper</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Relay 1, lower</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Relay 2, upper</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Relay 2, lower</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Metering pump 1</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Control off</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Control on</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Metering pump 2</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Control off</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Control on</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Solenoid valve 1</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Control off</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Control on</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Solenoid valve 2</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>Control off</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Control on</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Servomotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, open relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control, close relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position feedback</td>
<td>The bar increases from left to right during opening</td>
<td></td>
</tr>
<tr>
<td>Stop button pressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual metering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE
Access to the setting menus can be barred with the access code!
The number and scope of setting menus depends on the device version!
If the access code is selected correctly in a setting menu, the following setting menus are also accessible!
If within a period of 10 minutes no button is pushed, the unit automatically branches back from the calibrating menu or a setting menu to the permanent display 1.
7 Restricted Operating Menu / Layout

The restricted operating menu permits simple operation of the most important parameters. The following overview shows the settings which can be selected:

- **Permanent display 1**
 - mea val.: 12.3 %
 - Id. fwd.: 70 %
 - reg. val.: 58 %
 - w.: 50 %

- **Permanent display 2**
 - only with control
 - (w = setpoint)

- **Positive values of setting variable**:
 - Negative values of setting variable:

- **Calibration**
 - Calibration zero-p.: 0 s
 - Td = 10 %
 - xp = 50 %

- **Control settings**
 - control regulated value: positive
 - control regulated value: negative
 - Control with dead zone
 - Manual control
 - Setpoint 1 lower
 - Setpoint 2 upper
 - Zero-p.: 12.3 %
 - Slope: 4.00 mA

- **Access to setting menus can be blocked with access code.**

- **Proportional control**
 - ctrl. parameter: xp = 10 %
 - ctrl. parameter: Td = 10 %
 - setpoint 1 lower
 - setpoint 2 upper

- **Limit settings**
 - limit 1: 30.0 %
 - limit 2: 26.0 %

- **General setting information**
 - ident-code: D1CA
 - D1C-B1 FW-5.00
 - Software version
 - alarm relay access c.
 - operating menu: active
 - English
 - Restricted

- **Number and scope of setting menus depends on the device.**

- **Setting in complete operating menu**

- **With dead zone**
 - manual dosing
 - regulated range
Calibration of the standard signal (zero-point calibration)

The D1C sets the control output to “0” during the calibration procedure. Exception: When a basic load or a manual control variable is set the corresponding parameter is retained during calibration. The standard signals outputs mA (measured value) are frozen. The measured value frozen at the start of calibration is the proposed value. This value is adjustable (arrow buttons!). Calibration is possible only when the value is ≥ 2 % of the measuring range. Following successful calibration, all troubleshooting procedures relating to the measured value are restarted.

IMPORTANT
The measuring range of the sensor must agree with the set measuring range.
The unit of measure must be set prior to calibration (see Page 14)!

Access to all setting menus can be blocked with an access code!

Permanent display 1
- **mea val.**: 12.3 %
- **slope**: 4.00 mA

Permanent display 2
- **reg. val.**: 0 %
- **w. fd. fwd.**: 100 %
- **only with control**: 14.5 %

Possible values

<table>
<thead>
<tr>
<th>Initial value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value</td>
<td>0.1 %</td>
<td>-5 %</td>
<td>105 %</td>
<td>21.00 mA</td>
</tr>
<tr>
<td></td>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>105 %</td>
<td>1.00 %</td>
</tr>
<tr>
<td></td>
<td>0.01 m</td>
<td>0 m</td>
<td>105 m</td>
<td>31.50 m</td>
</tr>
<tr>
<td></td>
<td>0.1 %</td>
<td>0 %</td>
<td>105 %</td>
<td>30.00 m</td>
</tr>
<tr>
<td></td>
<td>0.001 bar</td>
<td>0 bar</td>
<td>105 bar</td>
<td>1.050 bar</td>
</tr>
<tr>
<td></td>
<td>0.1 bar</td>
<td>0 bar</td>
<td>105 bar</td>
<td>5.250 bar</td>
</tr>
<tr>
<td></td>
<td>0.1 psi</td>
<td>0 psi</td>
<td>105 psi</td>
<td>100 psi</td>
</tr>
<tr>
<td></td>
<td>0.001 m³/h</td>
<td>0 m³/h</td>
<td>105 m³/h</td>
<td>9.999 m³/h</td>
</tr>
<tr>
<td></td>
<td>0.1 m³/h</td>
<td>0 m³/h</td>
<td>105 m³/h</td>
<td>100 m³/h</td>
</tr>
<tr>
<td></td>
<td>1 m³/h</td>
<td>0 m³/h</td>
<td>105 m³/h</td>
<td>1000 m³/h</td>
</tr>
<tr>
<td></td>
<td>0.1 gal/h</td>
<td>0 gal/h</td>
<td>105 gal/h</td>
<td>100 gal/h</td>
</tr>
<tr>
<td></td>
<td>1 gal/h</td>
<td>0 gal/h</td>
<td>105 gal/h</td>
<td>1000 gal/h</td>
</tr>
<tr>
<td></td>
<td>1 ppm</td>
<td>0 ppm</td>
<td>105 ppm</td>
<td>1000 ppm</td>
</tr>
<tr>
<td></td>
<td>0.1 %RH</td>
<td>0 %RH</td>
<td>105 %RH</td>
<td>100 %RH</td>
</tr>
<tr>
<td></td>
<td>0.01 mA</td>
<td>0/4 mA</td>
<td>21 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td>0.1 %</td>
<td>0 %</td>
<td>105 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Restricted Operating Menu / Description

Limit values

Access to all setting menus can be blocked with an access code!

<table>
<thead>
<tr>
<th>Type of limit transgression</th>
<th>Initial value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit 1: lower</td>
<td></td>
<td>upper</td>
<td>-5 %</td>
<td>105 %</td>
<td>Limit transgression when exceeding or dropping below value</td>
</tr>
<tr>
<td>Limit 2: upper</td>
<td></td>
<td>lower</td>
<td>-5 %</td>
<td>105 %</td>
<td>*only with limit value relay</td>
</tr>
<tr>
<td>Limit value</td>
<td></td>
<td>Limit 1: 0 %</td>
<td>0.1 %</td>
<td>-1.00 mA</td>
<td>Measuring unit %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit 2: 20.00 mA</td>
<td>0.01 mA</td>
<td>21 mA</td>
<td>Measuring unit mA</td>
</tr>
</tbody>
</table>

Control

Access to all setting menus can be blocked with an access code!

Note: The controlled variable is recalculated every second. Only suitable for processes with time constants greater than 30 s!

Access to all setting menus can be blocked with an access code!
Restricted Operating Menu / Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial Value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint</td>
<td>50 %</td>
<td>0.1 %</td>
<td>-5.0 %</td>
<td>105 %</td>
<td>Measuring unit: %</td>
</tr>
<tr>
<td></td>
<td>10.00 mA</td>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>21 mA</td>
<td>Measuring unit: mA</td>
</tr>
<tr>
<td>Control parameter xp</td>
<td>10 %</td>
<td>1 %</td>
<td>1 %</td>
<td>500 %</td>
<td>xp referred to measuring range</td>
</tr>
<tr>
<td>Control parameter Ti</td>
<td>off</td>
<td>1 s</td>
<td>1 s</td>
<td>9999 s</td>
<td>Function off = 0 s</td>
</tr>
<tr>
<td>Control parameter Td</td>
<td>off</td>
<td>1 s</td>
<td>1 s</td>
<td>2500 s</td>
<td>Function off = 0 s</td>
</tr>
<tr>
<td>Manual metering</td>
<td>0 %</td>
<td>1 %</td>
<td>-100 %</td>
<td>+100 %</td>
<td>Function off = 0 s</td>
</tr>
</tbody>
</table>

Abbreviation for control variables:

- $x_p = 100 \% / K_p$ (inverse proportional coefficient)
- $T_i = I$ controller integration time [s]
- $T_d = D$ controller differential time [s]

General settings

Access to all setting menus can be blocked with an access code!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial Value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm relay</td>
<td>active</td>
<td>active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>not active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access code</td>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>9999</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>as per identity code</td>
<td>as per identity code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating menu</td>
<td>restricted</td>
<td>restricted</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation for control variables:

- $x_p = 100 \% / K_p$ (inverse proportional coefficient)
- $T_i = I$ controller integration time [s]
- $T_d = D$ controller differential time [s]
8 Complete Operating Menu / Overview

All parameters of the controller can be set in the complete operating menu (access see previous page). The following overview shows the settings which can be selected:

Permanent display 1

12.3%

Permanent display 2

12.3% only with control

(w = setpoint)

Number and scope of setting menus depends on the device.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.

Access to setting menus can be blocked with access code.
Complete Operating Menu / Description

Calibration of the standard signal (two-point calibration)

The D1C sets the control output to “0” during the calibration procedure. Exception: When a basic load or a manual control variable is set the corresponding parameter is retained during calibration. The standard signals outputs mA (measured value) are frozen. The measured value frozen at the start of calibration is the proposed value. This value is adjustable (arrow buttons!). Calibration is possible only when the value is ≥2 % of the measuring range. Following successful calibration, all troubleshooting procedures relating to the measured value are restarted.

IMPORTANT

The measuring range of the sensor must agree with the set measuring range. The unit of measure must be set prior to calibration (see Page 14)!

Possible values

<table>
<thead>
<tr>
<th>Initial value</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value*</td>
<td>0.1 %</td>
<td>-5 %</td>
<td>105 %</td>
<td>*for possible measuring values see page 9</td>
</tr>
<tr>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>21.00 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error message

<table>
<thead>
<tr>
<th>Value distance too small</th>
<th>Condition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ value > 5.0 %</td>
<td>Measured value deleted</td>
<td></td>
</tr>
<tr>
<td>Δ value > 1.00 mA</td>
<td>Repeat calibration of measuring point</td>
<td></td>
</tr>
</tbody>
</table>
Complete Operating Menu / Description

Measuring variable

Access to all setting menus can be blocked with an access code!

IMPORTANT
The sensor must be recalibrated and the settings in all the menus checked after changing the assigned range!

<table>
<thead>
<tr>
<th>Measuring variable</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement signal</td>
<td>Level, Pressure, Water flow rate, Turbidity, Humidity, Measurement signal</td>
<td>0 - 30 m, 0 - 100 m, 0 - 1.000 bar, 0 - 10.00 bar, 0 - 100.0 bar, 0 - 100.0 psi, 0 - 1000 psi, 0 - 9.999 m³/h, 0 - 100.0 m³/h, 0 - 1000 m³/h, 0 - 100.0 gal/h, 0 - 1000 gal/h, 0 - 1000 ppm, 0 - 100.0 %RH, 0/4 - 20 mA, 0 - 100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring unit</td>
<td>0 - 100 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT
The setpoint and limit values are changed over to the corresponding initial values when the measuring range is changed! Check the settings in all menus!
Complete Operating Menu / Description

Measured value

Access to all setting menus can be blocked with an access code!

Standard signal input mA

<table>
<thead>
<tr>
<th>measured value setting ?</th>
<th>measured value range adjustment</th>
<th>measured value range adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA</td>
<td>20 mA = 100.0 %</td>
</tr>
</tbody>
</table>

IMPORTANT

When changing the range adjustment, the sensor must be newly calibrated and the adjustments in all menus have to be checked!

Pumps

Possible values

<table>
<thead>
<tr>
<th>Initial value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. stroke/minute of pumps 1 and 2</td>
<td>180</td>
<td>1</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

IMPORTANT

This function may not be activated for applications in which it can be assumed that the measured value will not change.

This function tests whether the measured value changes from that of the sensor (at the measured value input) within the "Measured value checkout time". It is assumed that it will do so for an intact sensor.

If the measuring value does not change during this checkout time, the DULCOMETER® D1C sets the control variable to "0" and the alarm relay drops out. The LCD display shows e.g. the message "limit 1/2".

Checkout time

<table>
<thead>
<tr>
<th>Initial value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>1 s</td>
<td>1 s</td>
<td>9999 s</td>
<td>Constant measurement signal results in message and alarm. Function off = 0 s</td>
</tr>
</tbody>
</table>

BA_DM_140_10_06_GB.p65 28.10.2006, 11:03 Uhr
Complete Operating Menu / Description

Relay for power control

Access to all setting menus can be blocked with an access code!

Only with limit relay, solenoid valve relay or servomotor

<table>
<thead>
<tr>
<th>Relay adjustment</th>
<th>Initial value</th>
<th>Possible values</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>as per identity code</td>
<td>Solenoid valve 1</td>
<td>Limit value 1*</td>
<td>Actuator 1</td>
<td>Timer 1</td>
<td>Servomotor off</td>
</tr>
<tr>
<td>Relay 2</td>
<td></td>
<td>Solenoid valve 2</td>
<td>Limit value 2*</td>
<td>Actuator 2</td>
<td>Timer 2</td>
<td>off</td>
</tr>
<tr>
<td>Period</td>
<td>10 s</td>
<td>1 s</td>
<td>10 s</td>
<td>9999 s</td>
<td>for solenoid valve</td>
<td></td>
</tr>
<tr>
<td>min. time</td>
<td>1 s</td>
<td>1 s</td>
<td>1 s</td>
<td>period/2</td>
<td>for solenoid valve</td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>off</td>
<td>1 h</td>
<td>1 h/off</td>
<td>240 h</td>
<td>for timer</td>
<td></td>
</tr>
<tr>
<td>t on</td>
<td>1 min</td>
<td>1 min</td>
<td>1 min</td>
<td>60 min</td>
<td>for timer</td>
<td></td>
</tr>
</tbody>
</table>

Cycle

IMPORTANT

The timer will reset in the event of a power failure.

At the end of the (timer) cycle time the DULCOMETER® D1C closes the assigned relay for the duration of “t on” (timer). “Pause” interrupts the timer.

16
Complete Operating Menu / Description

When the clock is shown in the LC display the timer can be reset to the start of the cycle at precisely this point using the enter button. The % figure in the LC display indicates the progress of the current cycle. Timer relays may be used, e.g. for shock metering or sensor cleaning.

The switching time of the DULCOMETER® D1C (solenoid valve) depends on the actuating variable and the "min. time" (smallest permitted operating factor of the connected device). The actuating variable determines the ratio $t_{on}/cycle$ and thus the switching times (see fig. above). The "min. time" influences the switching times in two situations:

a) theoretical switching time < min. time:

b) theoretical switching time > $(cycle - min. time)$ and calculated switching time < cycle

The DULCOMETER® D1C does not deactivate for a certain number of cycles until the differences between cycle and theoretical switching time exceed the "min. time".
Complete Operating Menu / Description

Limit values

Access to all setting menus can be blocked with an access code!

<table>
<thead>
<tr>
<th>Type of limit transgression</th>
<th>Possible values</th>
<th>Initial value</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit 1: lower</td>
<td>upper</td>
<td>0 %</td>
<td>0.1 %</td>
<td>-5 %</td>
<td>105 %</td>
<td>Limit transgression when exceeding or dropping below value</td>
</tr>
<tr>
<td>Limit 2: upper</td>
<td>lower</td>
<td>100 %</td>
<td>0.1 %</td>
<td>-5 %</td>
<td>105 %</td>
<td>Measuring unit percent</td>
</tr>
<tr>
<td>Limit 1: 0 mA</td>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>21 mA</td>
<td>21 mA</td>
<td>Measuring unit milliampere</td>
<td></td>
</tr>
<tr>
<td>Limit 2: 20 mA</td>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>21 mA</td>
<td>21 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis limits</td>
<td>0.2 %</td>
<td>0.1 %</td>
<td>0.1 %</td>
<td>105 %</td>
<td>Active in "cancellation of limit transgression" direction</td>
<td></td>
</tr>
<tr>
<td>0.04 mA</td>
<td>0.01 mA</td>
<td>0.02 mA</td>
<td>21.00 mA</td>
<td>21.00 mA</td>
<td>Results in message and alarm. Off = 0 s: Function switched off, no message, no alarm</td>
<td></td>
</tr>
<tr>
<td>Checkout time limits</td>
<td>off</td>
<td>1 s</td>
<td>1 s</td>
<td>9999 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Possible values</th>
<th>Initial value</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching direction

| Limit value 1 | active closed | active closed | Acts as N/O |
| Limit value 2 | active open | | Acts as N/C |

Switch-on delay Δt

<table>
<thead>
<tr>
<th>Possible values</th>
<th>Initial value</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>0 s</td>
<td>1 s</td>
<td>0 s</td>
<td>9999 s</td>
</tr>
</tbody>
</table>

Switch-off delay Δt

<table>
<thead>
<tr>
<th>Possible values</th>
<th>Initial value</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>0 s</td>
<td>1 s</td>
<td>0 s</td>
<td>9999 s</td>
</tr>
</tbody>
</table>

If the limit transgression is applied longer than the "delay time limit values", an error message is triggered and the alarm relay drops out; the control procedure stops if "control" is additionally set to "off".

If the limit transgression is applied longer than the "delay time limit values", an error message is triggered and the alarm relay drops out; the control procedure stops if "control" is additionally set to "off".
Complete Operating Menu / Description

Servomotor

The operating range is defined by the total resistance range of the feedback potentiometer. The maximum limit of the range actually used is set by defining the control range.

IMPORTANT

- Activation of the servomotor must be carried out with the same meticulous care as taken when calibrating a measuring sensor.
- To ensure correct operation, the activation time of the actuator used should not be less than 25 seconds for the control range from 0...100 %!

Access to all setting menus can be blocked with an access code!

Table: Servomotor Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Initial value</th>
<th>Possible values</th>
<th>Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servomotor</td>
<td>Setting</td>
<td>Setting</td>
<td>Setting ok</td>
<td>off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100 %</td>
<td>1 %</td>
<td>10 %</td>
<td>100 %</td>
<td></td>
<td>in % of operating range</td>
</tr>
<tr>
<td>direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- When the wide bar is as right as it will go, the stroke adjustment motor is fully open.
- The permanent display shows to what degree the motor has opened in % (the greater the percentage, the more open the servomotor.)
Complete Operating Menu / Description

Control

Access to all setting menus can be blocked with an access code!

Note: The controlled variable is recalculated every second. Only suitable for processes with time constants greater than 30 s!

Control settings?

Control regulated value: positive

Negative

Control with dead zone

Proportional control

Ctrl. parameter
xp = 10 %

For normal control

Setpoint

Ti = 10 s

Td = 0 s

Control with dead zone

Setpoint 1 lower

25 %

Setpoint 2 upper

-35 %

Control manual

Manual dosing

15 %

regulated range

Control parameter xp

10 %

50 %

Control parameter Ti

off

1 s

1 s

1 s

9999 s

2500 s

Function off = 0 s

Function off = 0 s

Additional load

0 %

1 %

1 %

-100 %

+100 %

Add. basic load

10 %

Positive values of setting variable:

Negative values of setting variable:

Possible values

Initial value

Increment

Lower value

Upper value

Remarks

Control

normal

normal

with dead zone

manual

Setpoint

50 %

10.00 mA

0.1 %

0.01 mA

-5.0 %

-1.00 mA

105 %

21 mA

Measuring unit: %

Measuring unit: mA

2 setpoints necessary for control with dead zone.

Setpoint 1 ≤ setpoint 2

Control parameter xp

10 %

50 %

Control parameter Ti

off

1 s

1 s

1 s

9999 s

2500 s

Function off = 0 s

Function off = 0 s

Additional load

0 %

1 %

1 %

-100 %

+100 %

Add. basic load

10 %

Positive values of setting variable:

Negative values of setting variable:

Abbreviation for control variables:

\(x_p = 100 \% / K_p \) (inverse proportional coefficient)

\(T_i = I \) controller integration time [s]

\(T_d = D \) controller differential time [s]
Complete Operating Menu / Description

Feed forward control

Standard signal output 1

Access to all setting menus can be blocked with an access code!

Feed forward control

Feed forward control (Flow)

<table>
<thead>
<tr>
<th>Initial Value</th>
<th>Possible Values</th>
<th>Lower Value</th>
<th>Upper Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed forward control code</td>
<td>10 Hz</td>
<td>0.01 Hz</td>
<td>0.1 Hz</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Standard signal 4–20 mA</td>
<td>500 Hz</td>
<td>1 Hz</td>
<td>5 Hz</td>
<td>500 Hz</td>
</tr>
</tbody>
</table>

Feed forward control rated value

<table>
<thead>
<tr>
<th>Initial Value</th>
<th>Possible Values</th>
<th>Lower Value</th>
<th>Upper Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed forward control multiplicative</td>
<td>20 mA</td>
<td>0.1 mA</td>
<td>0.4 mA</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

Feed forward control additive regulated value

<table>
<thead>
<tr>
<th>Initial Value</th>
<th>Possible Values</th>
<th>Lower Value</th>
<th>Upper Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed forward control additive</td>
<td>100 %</td>
<td>1 %</td>
<td>-500%</td>
<td>+500%</td>
</tr>
</tbody>
</table>

Standard signal output 1

Access to all setting menus can be blocked with an access code!

Complete Operating Menu / Description

Standard signal output 2

Access to all setting menus can be blocked with an access code!

Control with standard signal

Only with 2 standard signal outputs

signal output 2 mA setting ?

signal output 2 mA measured value: 0...20 mA

control regulated value: positive
negative

signal output 2 regulated value: 0 mA = 0 %
20 mA = 100 %

D1C2-mA-032-GB

<table>
<thead>
<tr>
<th>Variable allocation</th>
<th>Initial value</th>
<th>Possible values</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output range</td>
<td>as per identity code 0...20 mA</td>
<td>Measured value Controlled variable</td>
<td>0...20 mA</td>
<td>4...20 mA</td>
<td>3.6/4-20 mA</td>
</tr>
<tr>
<td>Range measured value</td>
<td>0-100 %</td>
<td>0.1 %</td>
<td>-5 %</td>
<td>105 %</td>
<td></td>
</tr>
<tr>
<td>Range controlled variable</td>
<td>0 %...+100 %</td>
<td>0.01 mA</td>
<td>-1.00 mA</td>
<td>21.00 mA</td>
<td></td>
</tr>
</tbody>
</table>

If control applicable

Reduction to 3.6 mA when alarm relay switches (not limit value violation)

Minimum range 1 % of measured value

Minimum range 1 %

General setting

Access to all setting menus can be blocked with an access code!

D1C2-mA-028-GB
Complete Operating Menu / Description

<table>
<thead>
<tr>
<th></th>
<th>Initial value</th>
<th>Possible values Increment</th>
<th>Lower value</th>
<th>Upper value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm relay</td>
<td>active</td>
<td>active not active</td>
<td></td>
<td></td>
<td>Reacts as a make contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>normal hold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td>normal</td>
<td>normal hold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control input pause</td>
<td>active closed</td>
<td>active closed</td>
<td></td>
<td></td>
<td>Reacts as a break contact</td>
</tr>
<tr>
<td>Alarm pause</td>
<td>off</td>
<td>off</td>
<td>60 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>td</td>
<td>0 min</td>
<td>1 min</td>
<td>0 min</td>
<td>9999</td>
<td></td>
</tr>
<tr>
<td>Access code</td>
<td>5000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>as per identity code</td>
<td>as per identity code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating menu</td>
<td>complete</td>
<td>restricted complete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal pause

If the pause switch is off, the DULCOMETER® D1C sets the operating outputs to “0” for as long as the pause switch is off or for a set time delay t_d (if t_d is set to > 0 min). While the pause switch is off, the D1C establishes the P-proportion in the background.

With PID-control (identity code characteristics “control characteristic” = 2): the I-proportion is stored when the pause is switched off (I-proportion then usually only present if $T_i > 0$ has been selected in the “Control setting?” setting menu).

Exception: the standard signal outputs mA for the measured value or correction value are not affected by the pause.

After pause is activated, the operating outputs remain at “0” for the length of the time delay t_d. The time delay t_d must be set up in such a way that in this time e.g. sample water (process-specific current concentration) flows to the sensor.

With PID-control (identity code characteristics “control characteristic” = 2): The control variable output resulting from the pause and the expiry of the time delay t_d is reconciled jointly with the current P-component and (if T_i is set > 0) with the newly established I-proportion.

Pause hold

If the pause switch is off, the DULCOMETER® D1C freezes the operating output at the most recent value for as long as the pause switch is off or for a set time delay t_d (if t_d is set to > 0 min). Whilst the pause switch is off, the D1C establishes the P-proportion in the background.

With PID-control (identity code characteristics “control characteristic” = 2): Even the mA standard signal outputs for measured value or correction value are frozen.

After pause is activated, the operating outputs remain frozen for the length of the time delay t_d. The time delay t_d must be set up in such a way that in this time e.g. sample water (process-specific current concentration) flows to the sensor.

With PID-control (identity code characteristics “control characteristic” = 2): The control variable output resulting from the pause and the expiry of the time delay t_d is reconciled jointly with the current P-proportion and (if T_i is set > 0) with the newly established I-proportion.
<table>
<thead>
<tr>
<th>Fault</th>
<th>Effect</th>
<th>Alarm</th>
<th>Remarks</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault text</td>
<td>Symbol</td>
<td>Effect</td>
<td>Alarm</td>
<td>Remarks</td>
</tr>
<tr>
<td>on metering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acknowledged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checkout time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic load</td>
<td>Stop</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function detachable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check function of sensor, measured value exceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exceed checkout time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal exceeded/drops below input 3 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic load</td>
<td>Stop</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal < 3.0 ± 0.2 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check sensor, transducer and value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input > 23 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or > 23 ± 0.2 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cable connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed forward control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal drops below value feedfwd input < 4 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal < 3.8 ± 0.2 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check sensor, transducer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiplicative stops continue</td>
<td>or > 23 ± 0.2 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and cable connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>additive continue continue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value last valid is used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal exceeded feedfwd input > 23 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continue</td>
<td>continue</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit transgression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit 1</td>
<td>Function detachable</td>
<td>Define cause, reset limits if necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control "on"</td>
<td>Stop</td>
<td>Stop</td>
<td>No/Yes*</td>
<td></td>
</tr>
<tr>
<td>Control "off"</td>
<td>Stop or Stop</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servomotor</td>
<td>Position not reached</td>
<td>Servomot. defect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Servomotor closes</td>
<td>Check servomotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics error</td>
<td>System defect.</td>
<td>Stop</td>
<td>Stop</td>
<td>Yes</td>
</tr>
<tr>
<td>Electronic data defective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call in service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*depending on whether "Alarm on" or "Alarm off" set in "General settings"