Two sets of operating instructions are required for the safe, correct and proper operation of the metering pumps: The product-specific operating instructions and the "General Operating Instructions for ProMinent® motor-driven metering pumps and hydraulic accessories".
Both sets of operating instructions are only valid when read together.

Please carefully read these operating instructions before use! Do not discard! The operator shall be liable for any damage caused by installation or operating errors! Technical changes reserved.
Supplementary information

Read the following supplementary information in its entirety! Should you already know this information, you have an even greater need of the Operating Instructions.

The following are highlighted separately in the document:

- Enumerated lists

Instructions

 Outcome of the handling instructions

- see (reference)

Information

This provides important information relating to the correct operation of the device or is intended to make your work easier.

Safety notes

Safety notes are identified by pictograms - see Safety Chapter.

General user instructions

Two sets of operating instructions are required for the safe, correct and proper operation of the metering pumps: The product-specific operating instructions and the “General Operating Instructions for ProMinent® motor-driven metering pumps and hydraulic accessories”.

Both sets of operating instructions are only valid when read together.

Please read these operating instructions carefully before use! Do not discard!

State the identity code and serial number

Please state identity code and serial number, which you can find on the nameplate when you contact us or order spare parts. This enables the device type and material versions to be clearly identified.

General non-discriminatory approach

In order to make it easier to read, this document uses the male form in grammatical structures but with an implied neutral sense. It is aimed equally at both men and women. We kindly ask female readers for their understanding in this simplification of the text.
Table of contents

1 Identity code ... 5
2 About this pump .. 7
3 Safety chapter ... 8
4 Storage, transport and unpacking 13
5 Overview of equipment, control elements 15
6 Functional description .. 17
7 Assembly ... 20
8 Installation ... 23
 8.1 Installation, hydraulic ... 23
 8.2 Installation, electrical ... 25
9 Start up .. 28
10 During use ... 31
11 Maintenance ... 32
12 Repairs ... 36
 12.1 Replacing the membrane 37
 12.2 Repair the diaphragm rupture sensor 39
 12.2.1 30 V version .. 39
 12.2.2 EX Version ... 40
 12.3 Valve repair ... 41
 12.3.1 Double ball valves .. 41
 12.3.2 Single ball valves ... 42
 12.3.3 Plate valves .. 43
13 Troubleshooting .. 45
14 Decommissioning and disposal 47
 14.1 Decommissioning ... 47
 14.2 Disposal ... 49
15 Technical data ... 50
 15.1 Performance data .. 50
 15.2 Accuracy .. 51
 15.2.1 Reproducibility ... 51
 15.2.2 Metering precision .. 51
 15.3 Viscosity .. 52
 15.4 Wetted materials .. 52
 15.5 Ambient conditions ... 53
 15.5.1 Temperatures .. 53
 15.5.2 Air humidity ... 53
 15.6 Housing degree of protection 54
 15.7 Stroke sensor (option), intrinsically safe 54
 15.8 Diaphragm rupture sensor 54
 15.9 Motor data .. 55
 15.10 Filling volumes .. 56
 15.10.1 Gear oil ... 56
 15.11 Sound pressure level ... 56
 15.12 Supplement for modified versions 56
16 Motor data sheet .. 58
17 EC Declaration of Conformity 59
18 Index ... 61
1 Identity code

<table>
<thead>
<tr>
<th>TZMb</th>
<th>Makro/5 diaphragm metering pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power end type</td>
</tr>
<tr>
<td></td>
<td>H Main power end</td>
</tr>
<tr>
<td></td>
<td>D Main power end, doubled</td>
</tr>
<tr>
<td></td>
<td>A Add-on power end</td>
</tr>
<tr>
<td></td>
<td>B Add-on power end doubled</td>
</tr>
<tr>
<td></td>
<td>Type *</td>
</tr>
<tr>
<td>120260, 070430, 040840</td>
<td>120340, 070570, 041100</td>
</tr>
<tr>
<td>120430, 070720, 041400</td>
<td>120510, 070860, 041670</td>
</tr>
<tr>
<td>120650, 071070, 042100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material dosing head **</td>
</tr>
<tr>
<td>PC</td>
<td>PVC</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>TT</td>
<td>PTFE + 25 % carbon</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Material of seals / diaphragm</td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
</tr>
<tr>
<td></td>
<td>Displacement body material</td>
</tr>
<tr>
<td>T</td>
<td>Multi-layer safety diaphragm with rupture signalling</td>
</tr>
<tr>
<td></td>
<td>Dosing head version</td>
</tr>
<tr>
<td>0</td>
<td>no valve spring</td>
</tr>
<tr>
<td>1</td>
<td>With valve spring</td>
</tr>
<tr>
<td></td>
<td>Hydraulic connector</td>
</tr>
<tr>
<td>0</td>
<td>Standard connection</td>
</tr>
<tr>
<td>1</td>
<td>Union nut and PVC insert</td>
</tr>
<tr>
<td>2</td>
<td>Union nut and PP insert</td>
</tr>
<tr>
<td>3</td>
<td>Union nut and PVDF insert</td>
</tr>
<tr>
<td>4</td>
<td>Union nut and SS insert</td>
</tr>
<tr>
<td></td>
<td>Version</td>
</tr>
<tr>
<td>0</td>
<td>With ProMinent® logo, no frame</td>
</tr>
<tr>
<td>2</td>
<td>Without ProMinent® logo</td>
</tr>
<tr>
<td>5</td>
<td>With ProMinent® logo, with single frame</td>
</tr>
<tr>
<td>5</td>
<td>With ProMinent® logo, with double frame</td>
</tr>
<tr>
<td>5</td>
<td>With ProMinent® logo, with triple frame</td>
</tr>
<tr>
<td>5</td>
<td>With ProMinent® logo, with quadruple frame</td>
</tr>
<tr>
<td>M</td>
<td>Modified*</td>
</tr>
<tr>
<td></td>
<td>* order-related version, for pump features see order paperwork</td>
</tr>
<tr>
<td></td>
<td>Electric power supply</td>
</tr>
<tr>
<td>TZMb</td>
<td>Makro/ 5 diaphragm metering pump</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>V(0)</td>
</tr>
<tr>
<td></td>
<td>V(2)</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Motor version</td>
<td>0</td>
</tr>
<tr>
<td>Motor version</td>
<td>1</td>
</tr>
<tr>
<td>Motor version</td>
<td>2</td>
</tr>
<tr>
<td>Motor version</td>
<td>A</td>
</tr>
<tr>
<td>Stroke sensor</td>
<td>0</td>
</tr>
<tr>
<td>Stroke sensor</td>
<td>1</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>0</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>1</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>2</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>3</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>4</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>5</td>
</tr>
<tr>
<td>Stroke length adjustment</td>
<td>6</td>
</tr>
<tr>
<td>Applications</td>
<td>0</td>
</tr>
</tbody>
</table>

* Figure 1 + 2=back pressure [bar]; figure 3 - 6=pump capacity [l/h]

* Material versions PPT/PCT/TTT max. 10 bar
2 About this pump

All pumps

The Makro TZ diaphragm metering pump is fitted as standard with a 0.75 kW wide range AC motor. The stroke length can be adjusted between 0...10 mm. The acrylic resin painted cast housing can be combined with up to 16 liquid end sizes and 5 gear reduction ratios (integrated in the spur geared motor). The liquid ends are available in various material combinations which can be matched to the feed chemicals being metered.

The Makro TZMb is equipped as standard with a multi-layer diaphragm and diaphragm rupture sensor.

Externally mounted pumps

The Makro TZ externally mounted metering pump can be combined with the Makro TZ main power end to form a double or multiple pump. A main power end can be combined with up to four add-on power ends.

One power end can be used both as a single or a double head version.

Double head version

The double head versions are fitted with a second liquid end which operates in push-pull mode (Boxer principle).
3 Safety chapter

Identification of safety notes

The following signal words are used in these operating instructions to denote different severities of danger:

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Denotes a possibly dangerous situation. If this is disregarded, you are in a life-threatening situation and this can result in serious injuries.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Denotes a possibly dangerous situation. If this is disregarded, it could result in slight or minor injuries or material damage.</td>
</tr>
</tbody>
</table>

Warning signs denoting different types of danger

The following warning signs are used in these operating instructions to denote different types of danger:

<table>
<thead>
<tr>
<th>Warning signs</th>
<th>Type of danger</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ ⚠️ ⚠️ ⚠️</td>
<td>Warning – hand injuries.</td>
</tr>
<tr>
<td>⚠️ ⚠️ ⚠️ ⚠️</td>
<td>Warning – high-voltage.</td>
</tr>
<tr>
<td>⚠️ ⚠️ ⚠️ ⚠️</td>
<td>Warning – flammable substances.</td>
</tr>
<tr>
<td>⚠️ ⚠️ ⚠️ ⚠️</td>
<td>Warning – hot surface.</td>
</tr>
<tr>
<td>⚠️ ⚠️ ⚠️ ⚠️</td>
<td>Warning – danger zone.</td>
</tr>
</tbody>
</table>

Correct and proper use

- The pump may only be used to meter liquid metering chemicals.
- In potentially explosive atmospheres in zone 1, device category II 2G of explosion group II C, the pump must only be operated with the appropriate nameplate (and the respective EC Declaration of Conformity) for pumps for potentially explosive atmospheres complying with Directive 94/9/EC in accordance with the European guidelines. The explosion group, category and degree of protection declared on the marking must correspond with or be better than the given conditions in the intended field of application.
- The pump may only be started up after it has been correctly installed and commissioned in accordance with the technical data and specifications contained in the operating instructions.
- The general limitations with regard to viscosity limits, chemical resistance and density must be observed – see also ProMinent resistance list (In the product catalogue or at www.prominent.com)!
- Any other uses or modifications are prohibited.
- Pumps without the relevant nameplate (and the respective EC Declaration of Conformity) for pumps for potentially explosive atmospheres must never be operated in potentially explosive atmospheres.
The pump is not intended for the metering of gaseous media or solids.
The pump is not intended for unprotected outside use.
The pump is only approved to meter flammable liquids, if the operator takes appropriate safety measures.
The pump should only be operated by trained and authorised personnel, see also "Qualification of personnel" on page 9.
You are obliged to observe the information contained in the operating instructions at the different phases of the device’s service life.

In hazardous locations only the following combinations of identity code variants is permitted:

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Identity code specification</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electric power supply</td>
<td>L, P</td>
</tr>
<tr>
<td></td>
<td>Motor version</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Electric power supply</td>
<td>0, 4, 7, 8, 9</td>
</tr>
<tr>
<td></td>
<td>Motor version</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Electric power supply</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Motor version</td>
<td>2</td>
</tr>
</tbody>
</table>

Qualification of personnel

<table>
<thead>
<tr>
<th>Activity</th>
<th>Qualification level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage, transport, unpacking</td>
<td>Instructed person</td>
</tr>
<tr>
<td>Assembly, installation of hydraulic system</td>
<td>Technical personnel, service</td>
</tr>
<tr>
<td>Installation, electrical</td>
<td>Electrical technician</td>
</tr>
<tr>
<td>Operation</td>
<td>Instructed person</td>
</tr>
<tr>
<td>Maintenance, repair</td>
<td>Technical personnel, service</td>
</tr>
<tr>
<td>Decommissioning, disposal</td>
<td>Technical personnel, service</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Technical personnel, electrical technician, instructed person, service</td>
</tr>
</tbody>
</table>

Explanation of the terms:

Technical personnel

A qualified employee is deemed to be a person who is able to assess the tasks assigned to him and recognise possible dangers based on his/her technical training, knowledge and experience, as well as knowledge of pertinent regulations.

Note:

A qualification of equal validity to a technical qualification can also gained by several years employment in the relevant work area.

Electrical technician

Electrical technicians are deemed to be people, who are able to complete work on electrical systems and recognize and avoid possible dangers independently based on their technical training and experience, as well as knowledge of pertinent standards and regulations.
Electrical technicians should be specifically trained for the working environment in which they are employed and know the relevant standards and regulations.

Electrical technicians must comply with the provisions of the applicable statutory directives on accident prevention.

Instructed person

An instructed person is deemed to be a person who has been instructed and, if required, trained in the tasks assigned to him/her and possible dangers that could result from improper behaviour, as well as having been instructed in the required protective equipment and protective measures.

Service

Customer Service department refers to service technicians, who have received proven training and have been authorised by ProMinent or ProMaqua to work on the system.

Safety notes

WARNING!

Warning of dangerous or unknown feed chemical

Should a dangerous or unknown feed chemical be used: It may escape from the hydraulic components when working on the pump.

- Take appropriate protective measures before working on the pump (e.g. safety glasses, safety gloves, ...). Observe the safety data sheet for the feed chemical.
- Drain and flush the liquid end before working on the pump.

WARNING!

Danger from hazardous substances!

Possible consequence: Fatal or very serious injuries.

Please ensure when handling hazardous substances that you have read the latest safety data sheets provided by the manufacture of the hazardous substance. The actions required are described in the safety data sheet. Check the safety data sheet regularly and replace, if necessary, as the hazard potential of a substance can be re-evaluated at any time based on new findings.

The system operator is responsible for ensuring that these safety data sheets are available and that they are kept up to date, as well as for producing an associated hazard assessment for the workstations affected.

CAUTION!

Warning of feed chemical spraying around

Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.

- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
- Depressurise the system before commencing any work on hydraulic parts.
CAUTION!
Warning of feed chemical spraying around
An unsuitable feed chemical can damage the parts of the pump contacted by the chemical.
- Take into account the resistance of the materials which will come into contact with the chemical when selecting the feed chemical - see the ProMinent product catalogue or under www.prominent.com.

CAUTION!
Danger of personnel injury and material damage
The use of untested third party parts can result in personnel injuries and material damage.
- Only fit parts to metering pumps, which have been tested and recommended by ProMinent.

CAUTION!
Danger from incorrectly operated or inadequately maintained pumps
Danger can arise from a poorly accessible pump due to incorrect operation and poor maintenance.
- Ensure that the pump is accessible at all times.
- Adhere to the maintenance intervals.

CAUTION!
Warning of illegal operation
Observe the regulations that apply where the unit is to be installed.

Information in the event of an emergency
In the event of an electrical accident, disconnect the mains cable from the mains or press the emergency cut-off switch fitted on the side of the system!

If feed chemical escapes, also depressurise the hydraulic system around the pump as necessary. Adhere to the safety data sheet for the feed chemical.

Protective equipment

1 Terminal box cover, motor
2 Fan impeller hood
3 Flange cover
4 Protective cover (only diaphragm and piston versions)

WARNING!
Warning of personal injury and material damage
- The customer must only remove the protective equipment if requested to do so by the operating instructions.
- The pump must not operate without fitted protective equipment.
Sound pressure level

Sound pressure level $L_{pA} < 70 \text{ dB}$ in accordance with EN ISO 20361:2010-10 at maximum stroke length, maximum stroke rate, maximum back pressure (water)
4 Storage, transport and unpacking

Safety notes

WARNING!
The transporting of pumps which have been used with radioactive feed chemicals is forbidden!
They will also not be accepted by ProMinent!

WARNING!
Only return metering pumps for repair in a cleaned state and with a flushed liquid end - refer to the section on decommisioning!
Only send metering pumps with a filled in Decontamination Declaration form. The Decontamination Declaration constitutes an integral part of an inspection / repair order. A unit can only be inspected or repaired when a Declaration of Decontamination Form is submitted that has been completed correctly and in full by an authorised and qualified person on behalf of the pump operator.
You can find the "Decontamination Declaration" form under www.prominent.com or on the CD.

CAUTION!
Danger of environmental and material damage
The unit can be damaged or oil may escape due to incorrect or improper storage or transportation!
- The unit should only be stored or transported in a well packaged state - preferably in its original packaging.
- Only transport the unit with the locking screw - not the bleed plug - fitted to the oil filling opening.
- The packaged unit should also only be stored or transported in accordance with the stipulated storage conditions.
- The packaged unit should be protected from moisture and the ingress of chemicals.

Scope of delivery

Compare the delivery note with the shipment:
- Metering pump
- Product-specific operating instructions with EC Declaration of Conformity
- "General Operating Instructions ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories".

Storage

Personnel: Technical personnel

1. Plug the caps on the valves.
2. Check whether the seal screw is screwed into oil filler opening instead of the vent screw.
3. Preferably place the pump standing vertically on a pallet and secure against falling over.
4. Cover the pump with a tarpaulin cover - allowing rear ventilation.
Store the pump in a dry, sealed place in the following ambient conditions.

<table>
<thead>
<tr>
<th>Ambient conditions</th>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum storage and transport temperature</td>
<td>-10°</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Maximum storage and transport temperature</td>
<td>+50°</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Maximum air humidity *</td>
<td>95%</td>
<td>% rel. humidity</td>
</tr>
</tbody>
</table>

* non-condensing
5 Overview of equipment, control elements

Power end, single head

![Diagram of Power end, single head]

Fig. 3: Side view (here TZMb H)

A Drive
C Liquid end
1 Vent screw
2 Stroke length adjustment wheel
3 Oil inspection window
4 Motor
5 Oil drainage screw

Power end, double head

![Diagram of Power end, double head]

Fig. 4: Side view (here TZMb D)

A Drive
C Liquid end
1 Vent screw
2 Stroke length adjustment wheel
3 Oil inspection window
4 Motor
5 Oil drainage screw
Overview of equipment, control elements

Liquid end

Fig. 5: View of the liquid end

1 Discharge valve
2 Dosing head
3 Diaphragm rupture sensor
4 Suction valve
5 Tube nozzle for leakage
6 Protective cover
6 Functional description

Power end functional description

The metering pump MAKRO TZ is an oscillating, continuously adjustable diaphragm pump. It is driven by an AC standard motor, the power end rotation of which is stepped down by a worm gear (1), transmitted via an adjustable cam (2), a connecting rod (3) and the slide rod (4) and hence converted into an oscillating movement - see Fig. 6. This drive principle ensures an exact, enforced execution of the prestroke and reciprocal stroke, which is particularly advantageous when overcoming large suction lifts or when metering highly viscous media. The adjustment of the stroke length takes place via a finely adjustable change to the eccentricity of the shift ring (TZ) (5) which influences the oscillating stroke movement. This drive principle ensures a harmonic, purely sinusoidal stroke movement for each stroke length adjustment. The harmony of the power end is expressed acoustically in the minimum running noise.

The power ends of the version TZMb have a maximum stroke length of 10 mm and are designed for operation with mechanically deflected diaphragm dosing heads. The power ends are also available for double-head TZMbD metering pumps.

Fig. 6: Cross-section through the power end
1. Worm gear
2. Cam shaft
3. Connecting rod
4. Slide rod
5. Shift ring

Functional description of the diaphragm liquid end

The metering diaphragm (2) hermetically shuts off the pump volume of the dosing head (3) from the outside. The suction valve (4) closes as soon as the metering diaphragm (2) is moved in to the dosing head (3) and the feed chemical flows through the discharge valve (1) out of the dosing head. The discharge valve (1) closes as soon as the metering diaphragm (2) is moved in the opposite direction due to the vacuum pressure in the dosing head and fresh feed chemical flows through the suction valve (4) into the dosing head. One cycle is thus completed.
Functional description

Fig. 7: Cross-section through the liquid end

1 Discharge valve
2 Metering diaphragm
3 Dosing head
4 Suction valve
5 Diaphragm rupture signaller

Diaphragm rupture warning system functional description

The diaphragm rupture warning system monitors the leak-tightness of the multi-layer diaphragm. Together with the diaphragm rupture sensor and downstream analysis electronics, the multi-layer diaphragm forms the diaphragm rupture warning system.

The multi-layer diaphragm has an expandable point (4) on its hole circle. If an outer layer of the multi-layer diaphragm breaks, feed chemical penetrates into it under pressure and inflates this expandable point (4). Consequently the pin (2) of the safety piston (1) presses against the diaphragm (3) of the diaphragm rupture sensor signaller so that a contact signal switches off the pump or triggers an alarm signal (customer installed!).

Moreover, the multi-layer diaphragm prevents feed chemicals escaping in the event of diaphragm rupture.
Fig. 8: Diaphragm rupture sensor: Cross-section view and multi-layer diaphragm

1 Safety piston
2 Pin
3 Diaphragm rupture signaller
4 Expandable point
7 Assembly

Safety notes

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!

CAUTION!
Danger of environmental and material damage
The unit can be damaged or oil may escape due to incorrect or improper storage or transportation!
- The unit should only be stored or transported in a well packaged state - preferably in its original packaging.
- Only transport the unit with the locking screw - not the bleed plug - fitted to the oil filling opening.
- The packaged unit should also only be stored or transported in accordance with the stipulated storage conditions.
- The packaged unit should be protected from moisture and the ingress of chemicals.

CAUTION!
Warning about personal and material damage
Personal and material damage may be caused if the unit is operated outside of the permissible ambient conditions.
- Please observe the permissible ambient conditions - refer to the chapter entitled "Technical Data".

WARNING!
Risk of electric shock
If water or other electrically conducting liquids penetrate into the drive housing, an electric shock may occur.
- Position the pump so that drive housing cannot be flooded.

Supporting floor

Fig. 9
WARNING!
The pump can break through the supporting floor or slide off it
- The supporting floor must be horizontal, smooth and permanently load-bearing.

Capacity too low
Vibrations can disturb the valves of the liquid end.
- The supporting floor must not vibrate.

CAUTION!
Danger from incorrectly operated or inadequately maintained pumps
Danger can arise from a poorly accessible pump due to incorrect operation and poor maintenance.
- Ensure that the pump is accessible at all times.
- Adhere to the maintenance intervals.

Position the pump so that control elements such as the stroke length adjustment knob, the indicating dial A or the oil inspection window are accessible.

In so doing, ensure there is enough space to carry out an oil change (vent screws, oil drain plugs, oil trough ...).

1 Discharge valve
2 Dosing head
3 Suction valve

Ensure there is sufficient free space (f) around the dosing head as well as the suction and discharge valve so that maintenance and repair work can be carried out on these components.

Capacity too low
If the valves of the liquid end do not stand upright, they cannot close correctly.
- The discharge valve must be upright.

Capacity too low
Vibrations can disturb the valves of the liquid end.
- Secure the metering pump so that no vibrations can occur.
Take the dimensions (m) for the fastening holes from the appropriate dimensional drawings or data sheets.

Fasten the pump base to the supporting floor using suitable screws.

Fig. 12

Instruction

Screw the pump to a support surface with 4 sufficiently strong screws through the 4 holes in the frame.

Nothing more need be fitted to the pump itself: the pump is filled with gear oil and completely assembled on a frame.
8 Installation

8.1 Installation, hydraulic

CAUTION!
Danger of personnel injury and material damage
The disregard of technical data during installation may lead to personal injuries or damage to property.
- Observe the technical data - refer to chapter "Technical Data" and, where applicable, the operating instructions of the accessories.

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Warning of feed chemical reactions to water
Feed chemicals that should not come into contact with water may react to residual water in the liquid end that may originate from works testing.
- Blow the liquid end dry with compressed air through the suction connector.
- Then flush the liquid end with a suitable medium through the suction connector.

WARNING!
The following measures are an advantage when working with highly aggressive or hazardous feed chemicals:
- Install a bleed valve with recirculation in the storage tank.
- Install an additional shut-off valve on the discharge or suction ends.

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!
CAUTION!
Suction problems possible
For feed chemicals with a particle size greater than 0.3 mm, the valves may no longer close properly.
- Install a suitable filter in the suction line.

CAUTION!
Warning against the discharge line bursting
With a closed discharge line (e.g. due to a clogged discharge line or by closing a valve), the pressure that the metering pump generates can reach several times the permissible pressure of the system or the metering pump. This could lead to lines bursting resulting in dangerous consequences with aggressive or toxic feed chemicals.
- Install a relief valve that limits the pressure of the pump to the maximum permissible operating pressure of the system.

CAUTION!
Warning against the discharge line bursting
Tube lines with insufficient pressure rating may burst.
- Only use tube lines with the required pressure rating.

CAUTION!
Warning against lines disconnecting
With suction, discharge and relief lines installed incorrectly can loosen / disconnect from the pump connection.
- Only use original tubing with the specified tube diameter and wall thickness.
- Only use clamp rings and tube nozzles that correspond with the respective hose diameter.
- Always connect the lines without mechanical tension.
- Precise metering is only possible when the back pressure is maintained above 1 bar at all times.
- If metering at atmospheric pressure, a back pressure valve should be used to create a back pressure of approx. 1.5 bar.

Personnel: Technical personnel

Route the leakage liquid drainage line
The leakage liquid is drained off via the flushing collar and a tube nozzle, without other parts of the liquid end coming into contact with the medium.

1. Connect a tube to the lower tube nozzle.
2. Route the tube into a collection device for the leakage liquid.
8.2 Installation, electrical

WARNING!
Danger of electric shock
Unprofessional installation may lead to electric shocks.
- All cable cores cut to length must be provided with cable end sleeves.
- The Installation, electrical of the device may only be undertaken by technically trained personnel.

WARNING!
Danger of electric shock
In the event of an electrical accident, it must be possible to quickly disconnect the pump, and any electrical ancillaries which may possibly be present, from the mains.
- Install an emergency cut-off switch in the mains supply line to the pump and any electrical ancillaries which may be present or
- Integrate the pump and electrical ancillaries which may be present in the emergency cut-off management of the system and inform personnel of the isolating option.

WARNING!
Danger of electric shock
This pump is equipped with a protective earth conductor, to reduce the risk arising from an electric shock.
- Connect the PE conductor to "earth" with a clean and permanent electrical connection.

WARNING!
Danger of electric shock
A mains voltage may exist inside the pump housing.
- If the pump housing has been damaged, you must disconnect it from the mains immediately. It may only be returned to service after an authorised repair.

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!
Personnel: Electrician

What requires electrical installation?
- motor
- External fan (option)
- Stroke control drive (Option)
- Stroke adjusting drive (Option)
- Diaphragm rupture sensor
- Stroke sensor (Option)
- Frequency converter (option)

CAUTION!

Pump can be damaged

The pump can be damaged if the motor drives the pump in the wrong direction.
- When connecting the motor, pay attention to the correct direction of rotation indicated by the arrow on the fan cover, as shown in Fig. 13.

CAUTION!

The motor may be damaged

The motor is not equipped with a fuse.
- Install a suitable motor protection switch.

![Fig. 13: Direction of rotation of motor](image)

1. Use a suitable cable between the motor terminal box and power supply.
2. Install an emergency cut-off switch or include the motor in the emergency cut-off management of the system.

- Key motor data can be found on the unit nameplate.
- Motor data sheets can be requested for more information.
- The terminal wiring diagram is located in the terminal box.
- Notes on the speed controlled motor with external fan and temperature monitoring can be found in the "General operating instructions for ProMinent® motor-driven metering pumps and hydraulic accessories"!

ProMinent®
The external fan requires an independent mains connection.

Stroke sensor (Option)

Connect the stroke sensor to a suitable monitoring device according to the details in the chapter "Technical Data". Also observe its technical data.

Other units

Install the other units according to their documentation.
9 Start up

Safety notes

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
– The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

CAUTION!
Possible environmental and material damage
The screw plug in the oil filler neck is factory-fitted and, during operation, prevents any pressure equalisation between the power end housing and the surroundings. This ensure that oil can be pushed from the power end housing.
– Replace the screw plug on the oil filler neck by the air vent plug supplied.
– Retain the sealing plug for subsequent transport of the unit.

CAUTION!
Single head version only: Oil may escape
The screw plug in the oil filler neck is factory-fitted and, during operation, prevents any pressure equalisation between the drive housing and the surroundings. This ensure that oil can be pushed from the drive housing.
– Ensure that the hole in the metal cap on the drive flange is always clear - see "Overview of equipment, control elements".

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!

Installing a vent screw
Replace the sealing screw at the oil filler neck with the supplied vent screw - see chapter "Overview of equipment and control elements".

Checking the oil level
When the pump is idle, check whether the pump oil level slightly covers the lower oil inspection window.
This indicates that the pump has not lost oil and consequently been damaged.

Checking the direction of rotation
When commissioning the unit, check whether the drive motor is rotating correctly - check this against the arrow on the motor housing or the diagram in the chapter entitled "Electrical Installation."
Eliminating suction problems (only for single ball valves with PTFE ball seat)

For suction problems occurring during start up:
- Exclude the possibility that there are foreign bodies in the valve.
- Place the valve on a stable surface.
- Using a hammer (1) and a brass bar (2), gently tap the PTFE ball seat above the valve ball - see figure below.
- Then with the valve in a damp condition allow it to prime.

The stroke length can only be adjusted when the machine is stationary, provided the liquid ends are depressurised.

<table>
<thead>
<tr>
<th>Stroke length adjustment wheel markings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 rotation =</td>
</tr>
<tr>
<td>1 long scale marking =</td>
</tr>
<tr>
<td>1 short scale marking =</td>
</tr>
</tbody>
</table>

Fig. 15: Stroke length adjustment wheel with scale

Fig. 14: Tapping the valve set disc

Adjusting the stroke length

Table:

<table>
<thead>
<tr>
<th>Stroke length</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
<td>100 % stroke length (10 rotations)</td>
</tr>
<tr>
<td>6.3 mm</td>
<td>63 % stroke length (6 rotations and 3 long scale markings)</td>
</tr>
<tr>
<td>6 mm</td>
<td>60 % stroke length (5 rotations and 5 long scale markings)</td>
</tr>
<tr>
<td>5 mm</td>
<td>50 % stroke length (4 rotations and 4 long scale markings)</td>
</tr>
<tr>
<td>4 mm</td>
<td>40 % stroke length (3 rotations and 3 long scale markings)</td>
</tr>
<tr>
<td>3 mm</td>
<td>30 % stroke length (2 rotations and 2 long scale markings)</td>
</tr>
<tr>
<td>2 mm</td>
<td>20 % stroke length (1 rotation and 1 long scale marking)</td>
</tr>
<tr>
<td>1 mm</td>
<td>10 % stroke length (0 rotations and 0 long scale markings)</td>
</tr>
</tbody>
</table>
Correctly adjusting the pump:

- Select as large a stroke length as possible for viscous feed chemicals.
- Select as large a stroke length as possible for outgassing feed chemicals.
- Select as high a stroke rate as possible for good mixing.
- For precise metering using quantity-proportional metering, do not set the stroke length to less than 30%.

The pump can now be released for operation.
10 During use

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Personnel injury and material damage may occur
During use all units, protective equipment, additional devices must be fitted, operational and tightly closed.

WARNING!
Sparking caused by dry running
If the bearings in the power end run dry, sparks can be formed.
- Check for oil leaks.
- When the pump is idle, the pump oil level must slightly cover the lower oil inspection window.

Observe the instructions in the "Start up" chapter and the operating instructions for the other machine components.
11 Maintenance

Safety notes

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
It is mandatory that you read the safety information and specifications in the "Storage, Transport and Unpacking" chapter prior to shipping the pump.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...).
- Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.

WARNING!
Risk of fingers being crushed
Under unfavourable conditions, the stroke axle or displacement body can cause crushing of the fingers.
- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.

WARNING!
Risk of injury from the fan impeller
The fan impeller beneath motor's fan cowling can cause severe injuries while it is turning.
- The pump must only be connected to the mains voltage with the fan cowling closed.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
- Depressurise the system before commencing any work on hydraulic parts.
Under heavy loading (e.g. continuous operation) shorter maintenance intervals are recommended than those given.

Place a spare parts kit in stock ready for maintenance work.
Order numbers are contained on the CD.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly*</td>
<td>EX pumps only: For special maintenance work see chapter "Important supplements for metering pumps in hazardous locations" of the "General Operating Instructions for ProMinent® motor-driven metering pumps and hydraulic accessories"</td>
</tr>
<tr>
<td></td>
<td>Check the tightening torques for the dosing head screws (1) (30 Nm) and the drive flange screws (2) (25 Nm).</td>
</tr>
<tr>
<td></td>
<td>Check that the discharge valve and suction valve are correctly seated.</td>
</tr>
<tr>
<td></td>
<td>Check the correct seating and state of the metering lines at both discharge and suction ends.</td>
</tr>
<tr>
<td></td>
<td>Check for firm seating of the diaphragm rupture sensor.</td>
</tr>
<tr>
<td></td>
<td>Check the tightness of the entire liquid end - particularly around the leakage hole!</td>
</tr>
<tr>
<td></td>
<td>Check the oil level.</td>
</tr>
<tr>
<td></td>
<td>Single head versions only: Check that the hole in the metal cap on the drive flange is clear - see the figure in the "Safety Chapter".</td>
</tr>
<tr>
<td></td>
<td>Check that the electrical connections are intact</td>
</tr>
<tr>
<td></td>
<td>Check whether the pump is transporting media correctly - run briefly at high power. Observe the maximum permissible operating pressure!</td>
</tr>
<tr>
<td></td>
<td>Check, whether moisture can be detected at the tube nozzle (3); if so a diaphragm rupture has probably occurred.</td>
</tr>
</tbody>
</table>

* Under normal loading (approx. 30 % of continuous operation)

** After approx. 10,000 operating hours

Fig. 16: Liquid end tightening torques
1 Dosing head screws
2 Drive flange screws
3 Tube nozzle

Interval Maintenance work
After approx. 5,000 operating hours * Change the gear oil.
After approx. 10,000 operating hours ** Replace the diaphragm - refer to the "Repair" chapter - "Changing the diaphragm".
Under heavy loading (e.g. continuous operation): Shorter intervals.
* under normal loading.
With very unfavourable metering parameters: Shorter intervals.

Changing the gear oil

WARNING!
Risk of burns due to hot gear oil
The gear oil may become very hot when the pump is heavily loaded
– When draining oil, avoid contact with the oil running out.

Gear oil

<table>
<thead>
<tr>
<th>Gear oil</th>
<th>Supplied quantity</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilgear 634 VG 460</td>
<td>1.0 l</td>
<td>1004542</td>
</tr>
</tbody>
</table>

Gear oil filling volumes

<table>
<thead>
<tr>
<th>Types</th>
<th>Volume, approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3.2 l</td>
</tr>
</tbody>
</table>

Draining the gear oil:

1. Remove the vent screw (1).
2. Place an oil trough under the oil drain plug (2). Expected oil quantity - see filling volumes, above.
3. Unscrew the oil drain plug (2) out of the drive housing.
4. Allow the gear oil to run out of the drive.
5. Screw in the oil drain plug (2) with a new seal.

Fig. 17: Oil change

1. Vent screw
2. Oil drainage screw
3. Oil inspection window

Filling with gear oil:
1. Start up the pump.

2. Slowly pour gear oil through the vent screw (1) opening until the upper oil inspection window (3) is nearly covered.

3. Allow the pump to run for a further 1... 2 minutes.

4. Replace the vent screw (1).
Safety notes

12 Repairs

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
– The chapter “Important supplements for metering pumps in EX zones” of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
It is mandatory that you read the safety information and specifications in the "Storage, Transport and Unpacking" chapter prior to shipping the pump.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
– Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
– Drain and flush the liquid end before working on the pump.

WARNING!
Risk of fingers being crushed
Under unfavourable conditions, the stroke axle or displacement body can cause crushing of the fingers.
– Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.

WARNING!
Risk of injury from the fan impeller
The fan impeller beneath motor's fan cowling can cause severe injuries while it is turning.
– The pump must only be connected to the mains voltage with the fan cowling closed.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
– Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
– Depressurise the system before commencing any work on hydraulic parts.
12.1 Replacing the membrane

WARNING!
Observe the safety instructions at the beginning of the chapter.

1. Flush the suction line, discharge lines and liquid end (activate flushing equipment or immerge suction lance in a suitable medium and pump for a while (consider the effect of the medium on your system first!)) or proceed, as described below.

2. Set the stroke length to 0 % stroke with the pump running.

3. Switch off the pump.

4. Secure the pump to prevent it being switched back on.

5. If the liquid end has not been flushed according to the above processes, then protect yourself against the feed chemical - protective clothing, safety glasses, ...

After dismantling immediately place parts that have been wetting with the medium in a trough with a suitable medium for flushing, in dangerous media were used flush and rinse thoroughly.

6. Unscrew the hydraulic connectors on the discharge and suction side.

Fig. 18: Cross-section through the liquid end

1 Dosing head
2 Diaphragm
3 Reinforce plate
4 Screw
5 Leakage hole
6 Slide rod
7 Threaded connection
8 Turret
9 Backplate
Fig. 19: Cross-section through the diaphragm rupture warning system

1 Safety piston
2 Spring
3 Bushing
4 O-ring
5 Expandable point multi-layer diaphragm

8. Undo the safety screw and remove the protective cover (5) from the backplate (6).
9. Unscrew the diaphragm rupture signaller from the dosing head.
10. Unscrew the bushing (3) from the dosing head.
11. Take the safety piston (1) with the spring (2) out of the dosing head.
12. Undo the screws (4) on the reinforce plate.
13. Remove the dosing head (1) with the screws from the turret (8).
14. Unscrew the diaphragm (2) from the slide rod (6) and detach.
15. Clean the sealing surfaces.
16. Smear the thread of the threaded connection of the diaphragm slide rod with a little screw locking paste.
17. Screw the new diaphragm (2) up to the stop on the slide rod (8).
 ➡ This must be done correctly to ensure the pump meters accurately.
18. Place the dosing head (1), the reinforce plate (3) and the backplate (9) onto the turret(8).
19. Position the screws
20. Push the safety piston (1) with the spring (2) into the channel of the dosing head.
21. Screw the bushing into the dosing head (O-ring (4)!) and tighten by hand.
22. Screw the diaphragm rupture signaller into the dosing head.

CAUTION!
Failure of the diaphragm rupture signalling.
- Ensure the safety piston (1) and its pin can move freely.

23. Start the pump and tighten the screws crosswise at a 100% stroke.

| Tightening torque | 30 Nm |

24. Position the protective cover (5) on the turret (8) and screw in the safety screws.
12.2 Repair the diaphragm rupture sensor

12.2.1 30 V version

Check diaphragm rupture sensor

1. When changing the diaphragm, unscrew the diaphragm rupture sensor from the dosing head.

2. Check for electrical continuity:
 - Using a blunt insulating probe (Ø 2 ... 3 mm, no sharp edges), press into the channel of the diaphragm rupture sensor.
 - Check that there is no electrical continuity

3. Release the pin again.
 - Electrical continuity must be re-established.

4. Repeat the test several times.

If everything is working correctly, screw the diaphragm rupture sensor into the dosing head with a new seal (1).

If not, go to the next section.

Replace separating diaphragm of the diaphragm rupture sensor

1. Disconnect the diaphragm rupture sensor from the power supply.

2. When changing the diaphragm, unscrew the diaphragm rupture sensor from the dosing head.

3. Grasp the upper section (2) of the diaphragm rupture sensor.

4. Hold the body (5) in place with an open-ended spanner.

5. Unscrew the top of the diaphragm rupture sensor.

6. Clean the soiled parts.

7. Lay the new separating diaphragm (3) with the light side (PTFE) down into the upper section (2).

8. Lay the plate (4) with the uneven side down into the upper section (2).

9. Screw the body (5) into the upper section and screw tighten.

10. Check the diaphragm rupture sensor as described in “Check diaphragm rupture sensor”.

If the diaphragm rupture sensor does not operate clearly and reliably, then a new diaphragm rupture sensor must be used without fail.
12.2.2 EX Version

Check diaphragm rupture sensor

1. When changing the diaphragm, unscrew the diaphragm rupture sensor from the dosing head.
2. Check that the monitor does not indicate a diaphragm rupture:
3. Using a blunt insulating probe (Ø 2 ... 3 mm, no sharp edges), press into the channel of the diaphragm rupture sensor.
 ⇒ The monitor device must indicate a diaphragm rupture.
4. Release the pin again.
 ⇒ The monitor device must no longer indicate a diaphragm rupture.
5. Repeat the test several times.
6. If everything is working correctly, screw the diaphragm rupture sensor into the dosing head with a new seal (1).
7. If not, go to the next section.

Replace separating diaphragm of the diaphragm rupture sensor

1. Disconnect the diaphragm rupture sensor from the monitor device.
2. When changing the diaphragm, unscrew the diaphragm rupture sensor from the dosing head.
3. Grasp the upper section (2) of the diaphragm rupture sensor.
 Do not manipulate the lacquer-protected nut.
4. Hold the body (5) in place with an open-ended spanner.
5. Unscrew the top of the diaphragm rupture sensor.
6. Clean the soiled parts.
7. Lay the new separating diaphragm (3) with the light side (PTFE) down into the upper section (2).
8. Place the disc (4) in the upper section (2).
9. Place the spring inside the body (5).
10. Move the body (5) close to the upper section (2).
 ⇒ The spring (6) must sit correctly on the spring seat (3a).
11. Screw the body (5) into the upper section and screw tighten.
12. Connect the diaphragm rupture sensor back to the monitor device.
13. Check the diaphragm rupture sensor as described in "Check diaphragm rupture sensor".
14. If the diaphragm rupture sensor does not operate clearly and reliably, then a new diaphragm rupture sensor must be used without fail.
12.3 Valve repair

Unsuitable spare parts for the valves may lead to problems for the pumps.

- Only use new components that are especially adapted to fit your valve (both in terms of shape and chemical resistance).
- Use the correct spare part kits. In case of doubt, refer to the exploded views and ordering information contained in the "Supplementary information CD for ProMinent® pump operating instructions".

Clean the discharge and suction valves only one after another as they cannot be differentiated using the arrow markings.

12.3.1 Double ball valves

Cleaning a discharge valve

Taking the discharge valve apart
1. Unscrew the discharge valve from the dosing head and rinse out.
2. Dismantle the discharge valve.
3. Rinse and clean all parts.
4. Replace the worn parts and seals.

Assembling the discharge valve

When assembling, take note of the orientation of the valve seats (3). The valve seats (3) are used as a ball seat on the fine machined side and as a ball cage and spring guide on the other side. The fine machined side must point in the flow direction with all valve seats.

When assembling the valves, take note of the sequence:

Teflon – Metal – Teflon – Metal - ...
1. Slide into the valve body (1) one after another:
 - one seal (2) and one valve seat (3) - correct!
 - one seal (2) and one valve bushing (4)
 - (If fitted: one spring (*) into the spring guide of the valve seat (3)
 - one ball (5) into the valve body (1)
 - one seal (2) and the second valve seat (3, correct!)
 - one seal (2) and the second valve bushing (4)
 - (If fitted: the second spring (*) into the spring guide of the valve seat (3))
 - the second ball (5) into the valve body (1)
 - one seal (2), the third valve seat (3) - (correct!) and a further seal (2)

2. Position the insert disc (6) with the flare on the packing.

 The distance between the edge of the valve body and the insert disk (6) is due to the construction.

3. Place the larger seal (7) between the insert disk (6) and the dosing head.

4. Screw in the valve until the stop.

A suction valve is dismantled, cleaned and assembled in the same way as a discharge valve.

 Please note, however, that when assembling, the valve seat (3) must be aligned in the other direction. The fine machined side must point in the flow direction with all valve seats (3).

12.3.2 Single ball valves

1. Screw the valve cap (5) on to the suction side - see Fig. 23.
2. Carefully remove the parts from the valve body (2).
3. Replace the worn parts.
4. Clean the remaining parts.
5. Check all parts.
6. If available: Place the compression spring inside the valve body (2).
7. Insert the valve ball (3) and the valve seat (4).
8. Screw on the valve cap (5).

 Pay attention to the flow direction of the discharge and suction connectors when fitting the valve.
12.3.3 Plate valves

Do not scratch the finely machined sealing surfaces on the valve plates (5) and valve inserts (6).

1. Screw the valve cap (7) on to the suction side - see Fig. 24.
2. Carefully remove the parts from the valve body (4).
3. Replace the worn parts.
4. Clean the remaining parts.
5. Check all parts.
6. Place the compression spring (3) inside the valve body (4).

Position the compression spring with the end (see figure: arrow N, at the bottom) as shown on one of the lugs in the valve body.

Otherwise the valve plate may knock when in operation.

7. Insert the valve plate (5) and the valve insert (6).

8. Screw on the valve cap (7).

Pay attention to the flow direction of the discharge and suction connectors when fitting the valve.

Fig. 25: Inserting the compression spring

V Viewing direction
N Spring end position on the nose
13 Troubleshooting

Safety notes

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Fire danger
Only with combustible media: These may start to burn when combined with oxygen.
- When filling and draining the liquid end, the feed chemical must not come into contact with oxygen.

WARNING!
Hot surface
In event the power end motor is loaded excessively, its surface may become very hot.
- Avoid contact.
- If necessary, mount a guard plate.

WARNING!
Danger of an electric shock
Personnel working on electrical parts can be electrocuted if all electrical lines carrying current have not been disconnected.
- Disconnect the supply cable before working on the motor and prevent it from being reconnected accidentally.
- Any separately driven fans, servo motors, speed controllers or diaphragm rupture sensors fitted should also be disconnected.
- Check that the supply cables are de-energised.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.
Tasks

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Cause</th>
<th>Remedy</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump does not prime in spite of full stroke motion and bleeding</td>
<td>The valves are dirty or worn.</td>
<td>Repair the valves - see chapter entitled "Repair".</td>
<td>Technical personnel</td>
</tr>
<tr>
<td>Pump does not reach high pressure rates.</td>
<td>The valves are dirty or worn.</td>
<td>Repair the valves - see chapter entitled "Repair".</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td>The feed chemical has particles larger than 3 mm.</td>
<td>Install a suitable filter in the suction line.</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td>The motor is wired incorrectly.</td>
<td>1. Check the mains voltage and mains frequency.</td>
<td>Electrician</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Wire the motor correctly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The mains voltage has failed.</td>
<td>Eliminate the cause.</td>
<td>Electrician</td>
</tr>
<tr>
<td>The diaphragm rupture warning system generates an alarm</td>
<td>The multi-layer diaphragm is ruptured.</td>
<td>Replace the multi-layer diaphragm immediately - refer to the "Repair" chapter - "Changing the diaphragm".</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If necessary replace the separating diaphragm of the diaphragm rupture sensor - see "Replacing the separating diaphragm, diaphragm rupture sensor" in the chapter "Repair".</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the diaphragm rupture warning system for correct operation.</td>
<td></td>
</tr>
<tr>
<td>No hydraulic oil flows through the tube at the bleed valve</td>
<td>- - -</td>
<td>Immediately switch off the pump and inform customer service.</td>
<td></td>
</tr>
<tr>
<td>The power end motor is very hot.</td>
<td>The discharge line is seriously constricted.</td>
<td>Rectify any constriction of the discharge line.</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have the safety relief valve checked.</td>
<td></td>
</tr>
<tr>
<td>All other faults.</td>
<td>Other causes.</td>
<td>Call ProMinent® or ProMaqua® service.</td>
<td></td>
</tr>
</tbody>
</table>
14 Decommissioning and disposal

14.1 Decommissioning

WARNING!

Warning about personal and material damage

EX pumps only: When operating in EX areas, certain subjects must be observed.

- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!

Danger of an electric shock

When working on the motor or electrical auxiliary equipment, there is a danger of an electric shock.

- Before working on the motor, take note of the safety instructions in its operating instructions!
- Should external fans, servomotors or other auxiliary equipment be installed, these should also be disconnected and checked that they are voltage free.

WARNING!

Danger from chemical residues

There is normally chemical residue in the liquid end and on the housing after operation. This chemical residue could be hazardous to people.

- It is mandatory that the safety note relating to the "Storage, Transport and Unpacking" chapter is read before shipping or transporting the unit.
- Thoroughly clean the liquid end and the housing of chemicals and dirt. Adhere to the safety data sheet for the feed chemical.

WARNING!

Warning of hazardous or unknown feed chemical

Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.

- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.
Decommissioning and disposal

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
– Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
– Depressurise the system before commencing any work on hydraulic parts.

WARNING!
Hot oil and hot components
The hydraulic oil and the hydraulic end may become very hot when the pump is exposed to heavy loading.
– Allow the pump to cool before starting work.

CAUTION!
Danger of damage to the device
The device can be damaged by incorrect and improper storage or transportation.
– Take into account the information in the "Storage, Transport and Unpacking" chapter if the system is decommissioned for a temporary period.

Final decommissioning

Personnel: Technical personnel

1. Disconnect the pump from the mains power supply.
2. Depressurise and bleed the hydraulic system around the pump.
3. Flush the liquid end with a suitable medium - Observe the safety data sheet! Flush the dosing head thoroughly when using hazardous feed chemicals!
4. Drain the gear oil - refer to the chapter entitled "Maintenance".
5. Thoroughly clean the liquid end and the housing of chemicals and dirt.
6. Possible additional work - see chapter "Storage, Transport and Unpacking".

Temporary decommissioning

In addition:
1. Place the caps on the valves.
2. Push the caps into place on the tube nozzles.
3. Preferably place the pump on a pallet.
4. Cover the pump with a tarpaulin cover - allowing rear ventilation!
5. Store the pump is a dry, sealed place under storage conditions according to the chapter "Storage, Transport and Unpacking".
14.2 Disposal

Personnel: Technical personnel

CAUTION!
Environmental hazard due to gear oil
The pump contains gear oil, which can cause damage to the environment.
– Drain the gear oil from the pump.
– Note the local guidelines currently applicable in your country!

CAUTION!
Note the local guidelines generally currently applicable in your country!
15 Technical data

Only for "M - modified" version:

WARNING!
Risk of personal injuries
Please observe the "Supplement for modified version" at the end of the chapter!
It replaces and supplements the technical data!

15.1 Performance data

Main pumps with motor 1500 rpm under 50 Hz operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum pump capacity at maximum back pressure</th>
<th>Maximum stroke rate</th>
<th>Suction lift</th>
<th>Connector size</th>
<th>Shipping weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>l/h</td>
<td>ml/stroke</td>
<td>Strokes/min</td>
<td>m WS</td>
</tr>
<tr>
<td>120260</td>
<td>12</td>
<td>260</td>
<td>60</td>
<td>72</td>
<td>4</td>
</tr>
<tr>
<td>120340</td>
<td>12</td>
<td>340</td>
<td>60</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>120430</td>
<td>12</td>
<td>430</td>
<td>60</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>120510</td>
<td>12</td>
<td>510</td>
<td>60</td>
<td>144</td>
<td>4</td>
</tr>
<tr>
<td>120650</td>
<td>12</td>
<td>640</td>
<td>60</td>
<td>180</td>
<td>4</td>
</tr>
<tr>
<td>70430</td>
<td>7</td>
<td>430</td>
<td>99</td>
<td>72</td>
<td>3.5</td>
</tr>
<tr>
<td>70570</td>
<td>7</td>
<td>570</td>
<td>99</td>
<td>96</td>
<td>3.5</td>
</tr>
<tr>
<td>70720</td>
<td>7</td>
<td>720</td>
<td>99</td>
<td>120</td>
<td>3.5</td>
</tr>
<tr>
<td>70860</td>
<td>7</td>
<td>860</td>
<td>99</td>
<td>144</td>
<td>3.5</td>
</tr>
<tr>
<td>71070</td>
<td>7</td>
<td>1070</td>
<td>99</td>
<td>180</td>
<td>3.5</td>
</tr>
<tr>
<td>40840</td>
<td>4</td>
<td>840</td>
<td>194</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>41100</td>
<td>4</td>
<td>1100</td>
<td>194</td>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>41400</td>
<td>4</td>
<td>1400</td>
<td>194</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>41670</td>
<td>4</td>
<td>1670</td>
<td>194</td>
<td>144</td>
<td>3</td>
</tr>
<tr>
<td>42100</td>
<td>4</td>
<td>2100</td>
<td>194</td>
<td>180</td>
<td>3</td>
</tr>
</tbody>
</table>

* Material versions PPT, PCT, TTT / SST

The shipping weight is applicable to single head pumps without an add-on power end.

The permissible priming pressure at the suction side is approximately 50% of the max. permitted back pressure.

With double head pumps, the maximum permissible back pressure reduces from 7 to 5.5 bar or from 4 to 3 bar.

All figures refer to water at 20 °C.

The suction lift applies to filled suction line and filled liquid end - when installed correctly.

The priming lift of 2 m applies for clean and moistened valves and a clear outlet.
Main pumps with motor 1800 rpm under 60 Hz operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum pump capacity at maximum back pressure</th>
<th>Maximum stroke rate</th>
<th>Suction lift</th>
<th>Connector size</th>
<th>Shipping weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi</td>
<td>l/h</td>
<td>gph</td>
<td>Strokes/min</td>
<td>m WS</td>
</tr>
<tr>
<td>120260</td>
<td>174</td>
<td>309</td>
<td>81.8</td>
<td>86</td>
<td>4</td>
</tr>
<tr>
<td>120340</td>
<td>174</td>
<td>414</td>
<td>109.5</td>
<td>115</td>
<td>4</td>
</tr>
<tr>
<td>120430</td>
<td>174</td>
<td>518</td>
<td>137</td>
<td>144</td>
<td>4</td>
</tr>
<tr>
<td>120510</td>
<td>174</td>
<td>622</td>
<td>164.5</td>
<td>173</td>
<td>4</td>
</tr>
<tr>
<td>120650</td>
<td>174</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>70430</td>
<td>100</td>
<td>511</td>
<td>135</td>
<td>86</td>
<td>3.5</td>
</tr>
<tr>
<td>70570</td>
<td>100</td>
<td>683</td>
<td>180</td>
<td>115</td>
<td>3.5</td>
</tr>
<tr>
<td>70720</td>
<td>100</td>
<td>855</td>
<td>226</td>
<td>144</td>
<td>3.5</td>
</tr>
<tr>
<td>70860</td>
<td>100</td>
<td>1028</td>
<td>272</td>
<td>173</td>
<td>3.5</td>
</tr>
<tr>
<td>71070</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.5</td>
</tr>
<tr>
<td>40840</td>
<td>58</td>
<td>1001</td>
<td>264</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>41100</td>
<td>58</td>
<td>1339</td>
<td>354</td>
<td>115</td>
<td>3</td>
</tr>
<tr>
<td>41400</td>
<td>58</td>
<td>1676</td>
<td>443</td>
<td>144</td>
<td>3</td>
</tr>
<tr>
<td>41670</td>
<td>58</td>
<td>2014</td>
<td>532</td>
<td>173</td>
<td>3</td>
</tr>
<tr>
<td>42100</td>
<td>58</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
</tbody>
</table>

* Material versions PPT, PCT, TTT / SST

The permissible priming pressure at the suction side is approximately 50% of the max. permitted back pressure.

With double head pumps, the maximum permissible back pressure reduces from 101.5 to 80 psi or from 58 to 43.5 psi.

All figures refer to water at 20 °C.

The suction lift applies to filled suction line and filled liquid end - when installed correctly.

The priming lift of 2 m applies for clean and moistened valves and a clear outlet.

15.2 Accuracy

15.2.1 Reproducibility

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducibility</td>
<td>±2</td>
<td>%</td>
</tr>
</tbody>
</table>

* for measurements taken under constant conditions, minimum 30 % stroke rate and water at 20 °C - when installed correctly, p< 1 bar

15.2.2 Metering precision

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metering precision</td>
<td>±1</td>
<td>%</td>
</tr>
</tbody>
</table>
Technical data

* at maximum stroke length and maximum back pressure

15.3 Viscosity

The liquid ends are generally suitable for the following viscosity ranges:

<table>
<thead>
<tr>
<th>Version</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>no valve springs</td>
<td>0 ... 200</td>
<td>mPas</td>
</tr>
<tr>
<td>with valve springs</td>
<td>200 ... 500</td>
<td>mPas</td>
</tr>
<tr>
<td>with appropriately laid out installation</td>
<td>500 ... 1000</td>
<td>mPas</td>
</tr>
<tr>
<td>with appropriately laid out installation and advice from ProMinent</td>
<td>> 1000</td>
<td>mPas</td>
</tr>
</tbody>
</table>

* Only when the installation is correctly adjusted

15.4 Wetted materials

with DN 25 ball valve

<table>
<thead>
<tr>
<th>Material version</th>
<th>Liquid end</th>
<th>Suction/discharge connector</th>
<th>Seals</th>
<th>Valve balls</th>
<th>Valve seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT</td>
<td>Polypropylene</td>
<td>PVDF</td>
<td>PTFE</td>
<td>Borosilicate glass</td>
<td>PTFE</td>
</tr>
<tr>
<td>PCT</td>
<td>PVC</td>
<td>PVDF</td>
<td>PTFE</td>
<td>Borosilicate glass</td>
<td>PTFE</td>
</tr>
<tr>
<td>TTT</td>
<td>PTFE with carbon</td>
<td>PTFE with carbon</td>
<td>PTFE</td>
<td>Ceramic</td>
<td>PTFE</td>
</tr>
<tr>
<td>SST</td>
<td>Stainless steel 1.4571/1.4404</td>
<td>Stainless steel 1.4571/1.4404</td>
<td>PTFE</td>
<td>Stainless steel 1.4401</td>
<td>PTFE</td>
</tr>
<tr>
<td>HCT</td>
<td>Hastelloy C4</td>
<td>Hastelloy C4</td>
<td>PTFE</td>
<td>Ceramic</td>
<td>PTFE</td>
</tr>
</tbody>
</table>

with DN 32 / DN 40 plate valves**

<table>
<thead>
<tr>
<th>Material version</th>
<th>Liquid end</th>
<th>Suction/discharge connector</th>
<th>Seals</th>
<th>Valve plates / valve spring</th>
<th>Valve seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT</td>
<td>Polypropylene</td>
<td>Polypropylene</td>
<td>PTFE</td>
<td>Ceramic / Hast. C + CTFE**</td>
<td>PTFE</td>
</tr>
<tr>
<td>PCT</td>
<td>PVC</td>
<td>PVC</td>
<td>PTFE</td>
<td>Ceramic / Hast. C + CTFE**</td>
<td>PTFE</td>
</tr>
<tr>
<td>TTT</td>
<td>PTFE with carbon</td>
<td>PTFE with carbon</td>
<td>PTFE</td>
<td>Ceramic / Hast. C + CTFE**</td>
<td>PTFE</td>
</tr>
<tr>
<td>SST</td>
<td>Stainless steel 1.4571/1.4404</td>
<td>Stainless steel 1.4571/1.4404</td>
<td>PTFE</td>
<td>Ceramic / Hast. C + CTFE**</td>
<td>PTFE</td>
</tr>
<tr>
<td>HCT</td>
<td>Hastelloy C4</td>
<td>Hastelloy C4</td>
<td>PTFE</td>
<td>Hast. C</td>
<td>PTFE</td>
</tr>
</tbody>
</table>

Patented, vacuum packed, multi-layer diaphragm.

** The valve spring is coated with CTFE (similar to PTFE)
15.5 Ambient conditions

15.5.1 Temperatures

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage and transport temperature</td>
<td>-10 ... +50</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature in operation (drive + motor):</td>
<td>-10 ... +40</td>
<td>°C</td>
</tr>
</tbody>
</table>

PC liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>45</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

PP liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

TT liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>90</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>120</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

SST liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>90</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>120</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

15.5.2 Air humidity

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum air humidity *:</td>
<td>95</td>
<td>% rel. humidity</td>
</tr>
</tbody>
</table>

*non-condensing (according to DIN IEC 60068-2-30)
15.6 Housing degree of protection

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection against contact and humidity*</td>
<td>IP 55</td>
</tr>
</tbody>
</table>

*according to DIN VDE 470 (EN IEC 60529)

15.7 Stroke sensor (option), intrinsically safe

Stroke sensor (option), intrinsically safe

Install the sensor according to the chapter "Installation, electrical".

Namur sensor (Specified for EX zones)

5–25 V DC, in accordance with Namur or DIN 19234, potential-free design.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage *</td>
<td>8</td>
<td>VDC</td>
</tr>
<tr>
<td>Power consumption - active surface</td>
<td>> 3</td>
<td>mA</td>
</tr>
<tr>
<td>uncovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption - active surface</td>
<td>< 1</td>
<td>mA</td>
</tr>
<tr>
<td>covered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated switching distance</td>
<td>1.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

* Ri ~ 1 kΩ

<table>
<thead>
<tr>
<th>Cable colour</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>-</td>
</tr>
<tr>
<td>brown</td>
<td>+</td>
</tr>
</tbody>
</table>

15.8 Diaphragm rupture sensor

Install the sensor according to the chapter "Installation, electrical".

Contact (standard)

<table>
<thead>
<tr>
<th>Contact loading, max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>at voltage</td>
</tr>
<tr>
<td>30 V DC</td>
</tr>
</tbody>
</table>

The contact is an opener.

The contact is a potential-free.
Namur sensor (Specified for EX zones)

5–25 V DC, in accordance with Namur or DIN 19234, potential-free design.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage *</td>
<td>8</td>
<td>VDC</td>
</tr>
<tr>
<td>Power consumption - active surface uncovered</td>
<td>> 3</td>
<td>mA</td>
</tr>
<tr>
<td>Power consumption - active surface covered</td>
<td>< 1</td>
<td>mA</td>
</tr>
<tr>
<td>Rated switching distance</td>
<td>1.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

* Ri ~ 1 kΩ

Cable colour	Polarity
blue | -
brown | +

The monitor / power supply must be able to evaluate the current variations to indicate a diaphragm rupture!

15.9 Motor data

Motor data Makro TZ (TZMb)

<table>
<thead>
<tr>
<th>Identity code specification</th>
<th>Phase, protection</th>
<th>Rated voltage</th>
<th>Mains supply frequency</th>
<th>Rated output</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3 ph, IP 55</td>
<td>220-240 V/380-420 V</td>
<td>50 Hz</td>
<td>0.75 kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250-280 V/440-480 V</td>
<td>60 Hz</td>
<td>0.75 kW</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>3 ph, II2GEEX-eIIT3</td>
<td>220-240 V/380-420 V</td>
<td>50 Hz</td>
<td>0.75 kW</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>3 ph, II2GEEX-dIICT4</td>
<td>220-240 V/380-420 V</td>
<td>50 Hz</td>
<td>0.75 kW</td>
<td>with PTC, speed control range 1:5</td>
</tr>
<tr>
<td>P1</td>
<td>3 ph, II2GEEX-eIIT3</td>
<td>250-280 V/440-480 V</td>
<td>60 Hz</td>
<td>0.75 kW</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>3 ph, II2GEEX-dIICT4</td>
<td>250-280 V/440-480 V</td>
<td>60 Hz</td>
<td>0.75 kW</td>
<td>with PTC, speed control range 1:5</td>
</tr>
<tr>
<td>R</td>
<td>3 ph, IP 55</td>
<td>230 V/400 V</td>
<td>50/60 Hz</td>
<td>1.5 kW</td>
<td>with PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz</td>
</tr>
</tbody>
</table>
Technical data

<table>
<thead>
<tr>
<th>Identity code specification</th>
<th>Phase, protection</th>
<th>Rated voltage</th>
<th>Mains supply frequency</th>
<th>Rated output</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>1 ph, IP 55</td>
<td>400 V ±10 %</td>
<td>50/60 Hz</td>
<td>1.1 kW</td>
<td>Variable speed motor with integrated frequency converter</td>
</tr>
<tr>
<td>V2</td>
<td>3 ph, II2GEEEX- dIICT4</td>
<td>400 V ±10 %</td>
<td>50/60 Hz</td>
<td>1.5 kW</td>
<td>EX variable speed motor with integrated frequency converter.</td>
</tr>
</tbody>
</table>

Motor data sheets can be requested for more information.

15.10 Filling volumes

15.10.1 Gear oil

<table>
<thead>
<tr>
<th>Gear oil</th>
<th>Supplied quantity</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilgear 634 VG 460</td>
<td>1.0 l</td>
<td>1004542</td>
</tr>
</tbody>
</table>

Gear oil filling volumes

<table>
<thead>
<tr>
<th>Types</th>
<th>Volume, approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3.2 l</td>
</tr>
</tbody>
</table>

15.11 Sound pressure level

Sound pressure level

Sound pressure level LpA < 70 dB in accordance with EN ISO 20361:2010-10 at maximum stroke length, maximum stroke rate, maximum back pressure (water)

15.12 Supplement for modified versions

(With Identcode specification "Version": "M" - "modified")

Technical data

Technical data of pumps in the modified version can deviate from those of the standard pumps. They can be queried by stating the details of the serial number.

motor

The motor data sheets for the modified version are valid. They may deviate from the standard motor data sheets.
| **Spare parts** | With a modified version, it is absolutely necessary to specify the details of the serial number requesting and ordering the spare and replacement parts. |
Motor data sheet

<table>
<thead>
<tr>
<th>Bestell Nr.</th>
<th>Hersteller</th>
<th>ATB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1039212</td>
<td>ProMinent</td>
<td>570330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor- Typ</th>
<th>NF80/4H-13+E2</th>
<th>Leistungsfaktor</th>
<th>0,77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor type</td>
<td></td>
<td>power factor</td>
<td>0,78</td>
</tr>
<tr>
<td>Maschinenart</td>
<td>3-Ph. Motor</td>
<td>Wirkungsgrad</td>
<td>73%</td>
</tr>
<tr>
<td>Type of Machine designation</td>
<td></td>
<td>efficiency</td>
<td>76%</td>
</tr>
<tr>
<td>Schutzart</td>
<td>IP55</td>
<td>Bemessungsfrequenz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Degree of protection</td>
<td></td>
<td>rated frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Bauform</td>
<td>IMB14</td>
<td>Bemessungsdrehzahl</td>
<td>1440 U/min</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td>rated speed</td>
<td>1750 rpm</td>
</tr>
<tr>
<td>Bemessungsleistung</td>
<td>0,75 kW</td>
<td>Wärme Klasse</td>
<td>F</td>
</tr>
<tr>
<td>Rated output</td>
<td></td>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>Leistung</td>
<td></td>
<td>class</td>
<td></td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td></td>
<td>class d'isolation</td>
<td></td>
</tr>
<tr>
<td>Bemessungsspannung</td>
<td>400/230 +/-10% V</td>
<td>Anzugstrom</td>
<td>7,4 fach</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>440/254 +10 -15% V</td>
<td>starting current</td>
<td>fold</td>
</tr>
<tr>
<td>Bemessungsstrom</td>
<td>1,71 / 2,96 A</td>
<td>Anzugsmoment</td>
<td>3,1 fach</td>
</tr>
<tr>
<td>Rated current</td>
<td>1,54 / 2,67 A</td>
<td>starting torque</td>
<td>fold</td>
</tr>
<tr>
<td>Geprüft nach</td>
<td>EN 80034</td>
<td>Kippmoment</td>
<td>3,6 fach</td>
</tr>
<tr>
<td>tested in acc.</td>
<td></td>
<td>pull-out torque</td>
<td>fold</td>
</tr>
<tr>
<td>with contrôle</td>
<td></td>
<td>couple de décrochage</td>
<td>fold</td>
</tr>
<tr>
<td>ATEX Nr.</td>
<td></td>
<td>Umgebungstemperatur</td>
<td>40°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ambient temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>température ambiante</td>
<td></td>
</tr>
<tr>
<td>Ex-Schutzklasse</td>
<td></td>
<td>Schaltung</td>
<td>A / Δ</td>
</tr>
<tr>
<td>ex-protective</td>
<td></td>
<td>connection</td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td>branchement</td>
<td></td>
</tr>
<tr>
<td>Drehzahlregelbereich</td>
<td></td>
<td>speed adjustment range</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung

* auf Anfrage beim Hersteller

* upon request at manufacturer

* sur demande auprès du producteur

Die Daten entsprechen den Angaben der Motorenhersteller. Kenndaten funktionsgleicher Motoren anderer Hersteller ändern sich nur unwesentlich. Angaben ohne Gewähr. The data correspond to the details given by the motor manufacturers. Ratings of motors with the same functions made by other producers show insignificant changes only. This information is supplied without liability. Les données techniques correspond au descriptif du fabricant des moteurs. Les données techniques des moteurs similaires chez d'autres fabricants varient très peu. Données sont d'ordre général.
EC Declaration of Conformity

For pumps without explosion protection:

Description of the product:	Metering pump, Makro TZ series
Product type:	TZMa..., TZKa..., TZHa..., TZMb...
Serial no.:	Please refer to nameplate on the device
The safety objectives of the Low Voltage Directive 2006/95/EC are complied with in accordance with Appendix I, No. 1.5.1 of the Machinery Directive 2006/42/EC	
Harmonised standards applied, in particular:	EN ISO 12100, EN 809,
EN 60034-1/5/6/9, EN 60204-1,	
EN 61000-6-1/2/3/4	
Technical documents have been compiled by documentation specialists:	Norbert Berger
Im Schuhmachergewann 5-11	
DE-69123 Heidelberg	
Date / Manufacturer's signature:	05/10/2011
Details of the signatory:	Joachim Schall, Head of Development
For pumps with explosion protection: The EC Declaration of Conformity for pumps for potentially explosive atmospheres is enclosed with the pump. The EC Declaration of Conformity, the EC type-test reports and the operating instructions for the individual components are also enclosed with the pump.
18 Index

<table>
<thead>
<tr>
<th>Letter</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accuracy</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Air humidity</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Ambient conditions</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Assembly</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>Capacity</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Climate</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Connector size</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Contact</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Correct and proper use</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>Decommissioning</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Decontamination declaration</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Diaphragm rupture sensor</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Direction of rotation of</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Discharge valve</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Disposal</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Dosing head</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>During use</td>
<td>31</td>
</tr>
<tr>
<td>E</td>
<td>Emergency</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Emptying the liquid end</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>External fan</td>
<td>26</td>
</tr>
<tr>
<td>F</td>
<td>Functional description</td>
<td>17</td>
</tr>
<tr>
<td>G</td>
<td>Gear oil</td>
<td>56</td>
</tr>
<tr>
<td>H</td>
<td>Hydraulic oil</td>
<td>56</td>
</tr>
<tr>
<td>I</td>
<td>Identification of safety notes</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Identity code</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Information in the event of an emergency</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>23</td>
</tr>
<tr>
<td>L</td>
<td>Liquid end</td>
<td>17</td>
</tr>
<tr>
<td>M</td>
<td>Maintenance</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Metering precision</td>
<td>51</td>
</tr>
<tr>
<td>Modified</td>
<td>Motor</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Motor data sheet</td>
<td>26, 56</td>
</tr>
<tr>
<td>N</td>
<td>Namur sensor</td>
<td>54, 55</td>
</tr>
<tr>
<td>O</td>
<td>Oil</td>
<td>56</td>
</tr>
<tr>
<td>P</td>
<td>Protection against contact and humidity</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Pump capacity</td>
<td>50</td>
</tr>
<tr>
<td>Q</td>
<td>Qualification of personnel</td>
<td>9</td>
</tr>
<tr>
<td>R</td>
<td>Repairs</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>51</td>
</tr>
<tr>
<td>S</td>
<td>Safety chapter</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Scope of delivery</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Shipping weight</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Sound pressure level</td>
<td>12, 56</td>
</tr>
<tr>
<td></td>
<td>Spare parts</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Start up</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Storage and transport temperature</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Stroke length</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Stroke sensor</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Suction lift</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Suction valve</td>
<td>17</td>
</tr>
<tr>
<td>T</td>
<td>Technical data</td>
<td>50, 56</td>
</tr>
<tr>
<td></td>
<td>Temperatures</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Transport</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting</td>
<td>45</td>
</tr>
<tr>
<td>U</td>
<td>Unpacking</td>
<td>13</td>
</tr>
<tr>
<td>V</td>
<td>Valve repair</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Viscosity</td>
<td>52</td>
</tr>
<tr>
<td>W</td>
<td>Warning sign</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Wetted materials</td>
<td>52</td>
</tr>
</tbody>
</table>