Safety Precautions

Be sure to read and follow these instructions!

The Portamess® 913 X Cond may only be opened to change the batteries outside hazardous areas. If repairs are necessary, the meter must be sent in to the factory.

Never operate the remote interface or printer within hazardous areas.

Whenever it is likely that the protection has been impaired, the meter shall be made inoperative and secured against unintended operation.

The protection is likely to be impaired if, for example:

- the meter shows visible damage
- the meter fails to perform the intended measurements
- after prolonged storage at temperatures above 70 °C
- after severe transport stresses

Before recommissioning the meter, a professional routine test according to EN 61 010-1 shall be performed. This test should be carried out at our factory.
Information on this Instruction Manual

ITALICS are used for texts which appear in the Portamess® 913 (X) Cond display.

Bold print is used to represent the texts of keys, e.g. **cal**.

Display examples

or

Keys whose functions are explained are frequently shown in the left-hand column.

Note

Notes provide important information which should always be observed when using the meter.

Warning

Warning means that the instructions given must always be followed for your own safety. Failure to follow these instructions may result in injuries.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Precautions</td>
<td>III</td>
</tr>
<tr>
<td>Information on this Instruction Manual</td>
<td>IV</td>
</tr>
<tr>
<td>1 The Model 913 (X) Cond</td>
<td>1</td>
</tr>
<tr>
<td>Package contents</td>
<td>1</td>
</tr>
<tr>
<td>Short description of meter</td>
<td>1</td>
</tr>
<tr>
<td>2 Operation</td>
<td>3</td>
</tr>
<tr>
<td>Meter design</td>
<td>3</td>
</tr>
<tr>
<td>Display</td>
<td>4</td>
</tr>
<tr>
<td>Keypad</td>
<td>4</td>
</tr>
<tr>
<td>Connection and start-up</td>
<td>6</td>
</tr>
<tr>
<td>Configuration</td>
<td>8</td>
</tr>
<tr>
<td>Calibration</td>
<td>11</td>
</tr>
<tr>
<td>Measurement</td>
<td>15</td>
</tr>
<tr>
<td>Data memory</td>
<td>17</td>
</tr>
<tr>
<td>Datalogger</td>
<td>18</td>
</tr>
<tr>
<td>Clock mode</td>
<td>20</td>
</tr>
<tr>
<td>Serial interface</td>
<td>21</td>
</tr>
<tr>
<td>Standard setting for Lab Printer</td>
<td>22</td>
</tr>
<tr>
<td>Printing measured values and records</td>
<td>22</td>
</tr>
<tr>
<td>3 Troubleshooting and Maintenance</td>
<td>24</td>
</tr>
<tr>
<td>Error messages</td>
<td>24</td>
</tr>
<tr>
<td>Maintenance</td>
<td>27</td>
</tr>
<tr>
<td>Changing batteries</td>
<td>27</td>
</tr>
<tr>
<td>Cleaning the meter</td>
<td>28</td>
</tr>
</tbody>
</table>
Appendix ... 29
Accessories ... 29
Specifications for Portamess® 913 (X) Cond 30
Specifications for Lab Printer 31
Certificate of conformity ... 32
Glossary ... 34
Index ... 36
1 The Model 913 (X) Cond

Package contents

Please check the completeness of the shipment after un-packing. The package should include:

- Portamess® 913 (X) Cond incl. batteries and sensor container
- LF 204 sensor
- Carrying strap
- Instruction manual
- Short instructions in German, English and French
- Interface cable with adapter for printer and PC
- Paraly® SW 105 transfer software
- Field case

Short description of meter

- The Portamess® 913 (X) Cond measures conductivity, salinity, TDS and temperature in industry, the environment, food processing and waste-water treatment.
- Operation of the Portamess® 913 X Cond is also permitted in Zone 1 hazardous areas.
- The meter meets the EMC requirements of 89-336-EEC and the recommendations as per NAMUR NE 21.
- The meter is IP 66 protected to EN 60 529 (jet water from all directions).
Temperature compensation is automatic with an NTC 30 kΩ or a Pt 1000 temperature probe (automatic recognition during power-on). When using sensors without a temperature probe, the temperature can be manually specified.

Calibration can be carried out by directly entering the cell constants, by calibrating with calibration solutions KCl 0.01 mol/l or 0.1 mol/l or with any other buffer solutions.

The datalogger records up to 100 measured values with the temperature, date and time. Recording takes place either manually, interval or event-controlled.

To minimize battery consumption, the meter switches off after either one or twelve hours when it is not operated.

Only three AA batteries are required for uninterrupted operation for approx. 1,000 hours.

With the Paraly SW 105 software, the meter can be completely remote-controlled from a PC. All measured values and parameters can be read out and easily processed further (e.g. with Microsoft Excel).

Measured values and meter records can also be output directly to a printer via the serial interface.

Warning

Never use the remote interface in hazardous areas!
2 Operation

Meter design

1 Sensor connection
2, 3 Separate temperature probe connection
4 PC/printer interface connection
5 Sensor container, removable
Pressing on/off switches the meter on or off. After switching on, the meter automatically carries out a self-test and adjusts itself to the connected temperature probe.

Pressing meas returns the meter to the measuring mode from any function. Pressing meas in the measuring mode displays the following parameters:
- Cond measuring mode: temperature compensation
- toS measuring mode: TDS factor

The meter can also be switched on with meas. However, in this case only a short test is conducted without determination of the temperature probe. The meter assumes that the last temperature probe determined is used.

Pressing cal starts calibration.
With ▲ and ▼ you can select and change parameters and select a mode.

Pressing **clock** switches the meter into the clock mode. All measurement processes are cancelled and the battery consumption is reduced to a minimum.

Pressing **STO** records the measured value in the display and stores it in the data memory.

Pressing **RCL** displays stored measured values.

Pressing **print** outputs the currently measured value to a printer or PC.

Pressing **RCL** and then **print** prints out the data memory.

Pressing **cal** and then **print** prints out the meter record.

Pressing **STO** and then **clock** switches the meter into the datalogger mode.

Pressing **clock** and **STO** simultaneously activates the mode for setting the date and time.

Pressing **cal** and **on/off** simultaneously when the meter is switched off, activates the configuration menu.

When pressing two keys simultaneously, make sure that the key shown at the left is pressed first.
Connection and start-up

Connecting sensor

The following sensor from the line of accessories can be connected to the meter.

LF 204 4-electrode sensor with integrated NTC 30 kΩ temperature probe

Connection assignment

<table>
<thead>
<tr>
<th>Connection Socket</th>
<th>Sensor</th>
<th>Separate temperature probe</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2, 3</td>
<td>4</td>
</tr>
</tbody>
</table>

![Diagram of sensor connection]

If no temperature probe is used for measurement, the meter operates with the manually set temperature and man appears in the display.

Note

When using a sensor with integrated temperature probe, do not connect an external temperature probe.
If the meter is connected to a PC and is used to take measurements in a grounded liquid, measuring errors may result.

Prior to first use, the cell constant, temperature compensation and time and date must be checked and set, if required. The cell constant is printed on the sensor head and listed in the sensor specifications (also see Pg. 29).

The calibration and configuration data and the contents of the data memory remain permanently stored both with the meter switched off and with the batteries removed (battery replacement).

Pressing on/off switches the meter into the measuring mode. When switched on, the meter determines the connected temperature probe and conducts a self-test:

- Simultaneous appearance of all display segments
- Display of the model number
- Display of the software version

For recognition of the temperature probe, the conductivity sensor must be connected to the meter before power-on. The temperature probe is only recognized during the power-on procedure after pressing on/off.

The meter can also be switched on with meas. However, in this case only a short test is conducted without determination of the temperature probe. The meter assumes that the last temperature probe determined is used.

The LF 204 sensor has an integrated NTC temperature probe.
Configuration

The following basic settings can be changed in the configuration:

- Function Cond (conductivity), SAL (salinity) or tdS (Total Dissolved Solids or evaporation residue)
- Calibration by entering the cell constants (AutCal Off) or calibration with calibration solution (AutCal On)
- Automatic meter switch-off after 1 hour or 12 hours
- Interface
 - Printer output On/Off, baud rate
- Temperature display
 - °C or °F
- Date and time format
 - 24 hours and day, month, year or 12 hours (a.m./p.m.) and month, day, year

To activate the configuration, hold down cal with the meter switched off and then press on/off.

The menu items of the configuration menu are worked through in sequence. Use ▲ and ▼ to change the setting of the respective menu item. STO saves the parameters and switches to the next menu item.

Pressing meas exits the configuration menu at any time. The value last displayed and possibly changed will then not be saved.

Function

Select the measuring function Cond (conductivity), SAL (salinity) or tdS (Total Dissolved Solids or evaporation residue).

Automatic or manual calibration

Select whether you wish to adapt the sensor by directly entering the cell constants or by calibrating with a calibration solution and automatic drift check.

(Default setting: Direct entry of the cell constant (AutCAL OFF))
Direct entry of the cell constants (AutCal OFF) from 0.010 cm⁻¹ to 199.9 cm⁻¹. (Default setting 0.475 cm⁻¹)

Automatic calibration (AutCAL On) with 0.1 molar KCl solution, 0.01 molar KCl solution or entry of the temperature-compensated conductivity of another known calibration solution.

To protect the batteries, the meter switches off automatically when not operated for a longer time.

Switch-off after one hour or after twelve hours. (Default setting: 1 hour).
In the interface mode or when the datalogger is active, the meter is not switched off.

If the meter is controlled with a PC and interface conflicts occur when the print key is pressed, the print function should be deactivated (Print OFF). (Default setting: Print On, 4,800 baud)

The transmission speed can be set to 600, 1,200, 2,400, 4,800 or 9,600 baud. The transmission speed must correspond to that set in the printer or PC.
The data format and protocol are permanently set to 7 bit, one stop bit, even parity and XON/XOFF protocol (NAMUR NE 28).

The temperature can be displayed either in °C or °F. (Default setting: °C)
Date and time format
You can choose between the display format 24 hours and day.month.year and the format 12 hours a.m./p.m. and month.day.year.

(Default setting: 24 hours and day.month.year)
Calibration

With calibration the Portamess® 913 (X) Cond is adjusted to the cell constant of the sensor. It is generally sufficient to enter the cell constant specified by the sensor manufacturer in the meter.

General information on calibration

Calibration solutions
Solutions for calibration of conductivity measuring devices are unbuffered systems. Care should be taken to use fresh conductivity standards and to avoid contamination of the conductivity standard by water droplets adhering to the conductivity sensor.

Clean sensors
Before calibration, make sure that the conductivity sensor is clean. Residues should be rinsed off with distilled water. Afterwards, the sensor should be wiped dry and rinsed with the calibration solution to be used.

Cell constant
The cell constant is determined by the size and geometric arrangement of the measuring electrodes. It is the characteristic parameter of conductivity sensors. The cell constant changes very little over time. The prerequisite is clean electrode surfaces without insulating deposits. Regular calibration is therefore generally not necessary.

4-electrode sensors
With 4-electrode sensors the principle of separate current/voltage electrodes results in virtually no measuring errors even in the case of partial soiling of the measuring electrodes. However, electrodes completely soiled with insulating coatings cause the measurement to fail.

LF 204 sensor
For the LF 204 conductivity sensor, the cell constant is specified with a tolerance of 1.5%. This cell constant is entered and stored in the calibration mode (AutoCAL OFF). An additional calibration with calibration solutions is not necessary.

Operation 11
Calibration by direct entry of the cell constant (AutoCAL OFF)

LF 204 sensor: $c = 0.475 \text{ cm}^{-1}$

Press `cal` to activate calibration. The cell constant determined or set during the last calibration is displayed. Pressing `meas` exits calibration again.

Set the cell constant of the sensor used with `▲` and `▼` and confirm with `cal`. Then the meter switches back into the measuring mode.
Calibration with 0.1 or 0.01 molar KCl solution (AutCAL On)

Note

Impurities must always be prevented from getting into the calibration solutions.

Pressing **cal** activates calibration. Calibration can be exited again with **meas**. Then the cell constant of the last calibration is displayed briefly.

Select the calibration solution used (**CALSoL**). A 0.1 and a 0.01 molar KCl solution are available to choose from. Confirm the corresponding solution with **cal**.

Immerse the clean and dry sensor in the calibration solution (also see “Clean sensors”, Pg. 11).

Press **cal** to start calibration. If calibration is not desired, cancel the process with **meas**.

During calibration the lower line indicates the temperature. The automatic drift check checks the stability of conductivity and temperature. The hour glass flashes.

When the measured values are stable, the temperature-compensated table value of the KCl solution is displayed. The measured conductivity value flashes.

Confirm with **cal**.

The determined cell constant is displayed for a few seconds. Then the meter switches back into the measuring mode.
Calibration with any calibration solution (*AutCAL ON*)

Note
Impurities must always be prevented from getting into the calibration solutions.

Pressing **cal** activates calibration. Calibration can be exited again with **meas**. Then the cell constant of the last calibration is displayed briefly.

First confirm any of the 0.1 or 0.01 mol/l KCl solutions (**CALSoL**) with **cal**.

Immerse the clean and dry sensor in the calibration solution (also see “Clean sensors”, Pg. 11).

Press **cal** to start calibration. If calibration is not desired, cancel the process with **meas**.

During calibration the lower line indicates the temperature. The automatic drift check checks the stability of conductivity and temperature. The hour glass flashes.

When the measured values are stable, the temperature-compensated table value of the KCl solution is displayed. The measured conductivity value flashes.

See the table of your calibration solution for the conductivity value which belongs to the displayed measuring temperature.
Set the temperature-compensated conductivity in the meter with ▲ and ▼, then confirm it with **cal**.

The determined cell constant is displayed for a few seconds. Then the meter switches back into the measuring mode.
Measurement

Measuring mode

With **meas** the measuring mode can be reached from all functions. In the measuring mode the main display indicates the measured variable and the secondary display the temperature.

Note

If the Portamess® 913 (X) Cond is connected to a PC and measurements are taken in a grounded liquid, measuring errors may result.

Measuring the conductivity (Cond)

The main display indicates the measured conductivity, the secondary display the temperature.

Temperature compensation

The instrument offers various temperature compensation methods. With **meas** and ▲ or ▼ the temperature compensation method can be selected and set:

- **(tc OFF)** No temperature compensation
- **(tc nLF)** Temperature compensation with non-linear characteristic to EN 27088 or DIN 38404.8 for natural water and ultrapure water (reference temperature 25 °C). In the secondary display tc also appears.
- **(tc 0.01 – 9.99 %/°C)** Temperature compensation with linear characteristic and definable temperature coefficients (reference temperature 25 °C). In the secondary display tc also appears.

Note

When you have selected temperature compensation with linear characteristic, you can only exit this function or select the nonlinear function when the temperature coefficient has been set to 0.00.
Measuring the salinity (SAL)

The main display indicates the measured salinity in ‰ (g/kg), the secondary display the temperature.

TDS determination (TDS)

The main display indicates the concentration of the dissolved solids contributing to the solution conductivity (TDS, comparable to the evaporation residue) in mg/l, the secondary display the temperature.

TDS factor

Pressing meas and then ▲ or ◀ sets the TDS factor within the range 0.40 – 1.00.

Note

The TDS factor is dependent on the composition of the water to be tested and must be determined for each water type.

Manual temperature specification

The display man signals that no temperature probe is connected. The meter operates with the manually specified temperature. The specified temperature can be edited with the ▲ and ◀ keys in the Cond measuring mode.
Data memory

Up to one hundred measured values can be saved in the data memory together with the temperature, date and time. Storage is performed either manually or automatically using the datalogger. The currently measured value is stored.

Writing memory

Press STO. The currently measured value is shown in the display.

Select any memory location with ▲ and ▼. Press STO to store the measured value in the selected memory location. After storing, the memory location number is automatically incremented and the meter returns to measuring mode.

Reading memory

Pressing RCL displays the last stored value.

Select any memory location using ▲ and ▼.

Pressing RCL switches between the measured value and the time/date of storage. In this way, for example, a value can be searched for which was stored at a certain time.

Pressing meas returns to the measuring mode.

Clearing memory

To clear the entire data memory, press STO to enter the memory mode and then press clock to access the datalogger mode. Here select Clear (CLR) with ▲ or ▼.

By confirming this with STO, the entire data memory is cleared.

If you do not want to clear the memory, press meas to abort the procedure.
Datalogger

The datalogger records up to 100 measured values together with temperature, time and date in the data memory. Recording is carried out either manually at the press of a button, interval or event-controlled. The datalogger always stores the currently measured value.

Press **STO** to access the memory mode and then **clock** to access the datalogger mode.

Pressing **STO** confirms the selected mode. In the Continue and Start mode this also starts the datalogger. The current memory location is shown in the display. If “Clear” has been selected, all memory locations are cleared and the meter returns to measuring mode.

Pressing **meas** ends the datalogger mode.

Data logging modes

After pressing **STO**, logging is continued after the memory location in which the last measured value was stored (continue). Press **meas** to end logging.

After pressing **STO**, the entire data memory is cleared without starting the datalogger (clear).

After pressing **STO**, the entire data memory is cleared. Storage begins from memory location “00” (start). Press **meas** to end logging.

Operation 18
In the parameter setting mode, you select whether data storage is to be interval, event-controlled or manual. Press **STO** to access the logging functions.

To select interval-controlled storage of measured values, press **STO** and set the interval in which the recording is to take place using ▲ and ▼. The interval range is between 5 seconds and 60 minutes. Default time (factory-set) is 2 minutes. After selecting your interval time, press **STO** to enter the value.

With event-controlled data storage, a measured value is not stored until it deviates from the last memory value by the preset differential value. Using the time also stored, you can determine when the value has changed. The differential value is entered in the subsequent parameter-setting step.

The differential value is always based on the currently set measured variable (conductivity, salinity or TDS). This means that if differential conductivity values are to be logged, the meter must be set to conductivity measurement prior to parameter setting and data logging.

With manual data logging, the measured values are saved with **STO**.

After selecting the above parameters, select "Continue" or "Start" using the ▲ and ▼ keys and then press **STO** to commence logging.

The datalogger is a ring memory, i.e. it does not stop after reaching the last memory location (99). Recording is automatically continued with memory location number 00. To avoid losing data by overwriting, download stored data and clear the logger before beginning a new set of data. Be aware of this when using interval-controlled data collection.
Clock mode

Pressing **clock** exits the measuring mode, or enters the clock mode with the meter switched off. The time and date are displayed. In this mode the battery consumption of the meter is reduced to a minimum.

Setting clock

To set the clock or the date, the clock mode must be activated.

Press **clock** and **STO** simultaneously.

The time display flashes. Now the time can be set using ▲ and ▼.

Pressing **STO** again saves the displayed time. Now the date can be set.

Press **STO** again to save the date. Now the year can be set. Press **STO** to confirm the year. The meter returns to the clock mode.

Press **meas** to return to measuring mode.

Operation 20
Serial interface

Note
If the meter is connected to a PC and measurements are taken in a grounded liquid, measuring errors may result.

With the remote interface, you can directly send data to a printer with serial port or set up a direct connection to a personal computer. Via the computer, the meter can be completely remote controlled and all data and parameters can be read. Using the printer (e.g., Lab Printer, Order No. 100 87 17), you can directly print measured values, the memory and records.

Interface parameters
The RS 232 interface can be defined for all common baud rates.
Setting is carried out in the Configuration menu:

- Baud rate:
 - 600 Bd
 - 1,200 Bd
 - 2,400 Bd
 - 4,800 Bd (default setting)
 - 9,600 Bd

The data format and protocol are permanently set to:

- 7 bits
- even parity
- one stop bit
- XON/XOFF protocol

Note
For the command set of the Portamess® 913 (X) Cond, refer to the online help of the Paraly SW 105 transfer software.
Only one interface cable is required to operate with a printer or PC. By simply turning the plug around on the meter’s interface port, the cable can be used to connect either printer or PC. The label facing the operator should match the output device being connected.

Connection assignment

<table>
<thead>
<tr>
<th>1</th>
<th>DCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RXD</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>TXD</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>RXD</td>
</tr>
<tr>
<td>7</td>
<td>DSR</td>
</tr>
<tr>
<td>8</td>
<td>RTS</td>
</tr>
<tr>
<td>9</td>
<td>CTS</td>
</tr>
<tr>
<td>10</td>
<td>RI</td>
</tr>
</tbody>
</table>

Standard setting for Lab Printer

<table>
<thead>
<tr>
<th>Configuration on meter</th>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Baud rate</td>
<td>4800</td>
</tr>
<tr>
<td>Printer</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

Printing measured values and records

Note

Make sure that the printer function is activated in the configuration (Print On) and the set baud rate corresponds to that of the printer.

Printing measured values

Press **print** while in the measuring mode to print out the currently measured value. The measured value is printed out together with the temperature, date, time and a three-digit identification number. The identification number is reset when the meter is switched off.

Printing memory

Press **RCL** and then **print** to print out the logged data. All stored measured values are printed with temperature, date, time and memory location number. If you only want to print individual memory locations, press **RCL** first. Then select the desired memory location with **▲** or **▼** and confirm with **print**.
If the permissible measurement or temperature range has been exceeded during data logging or if the clock has not been set, the line on the print-out will be marked with "#". If temperature compensation was active during data logging, the line on the print-out will be marked with "!".

To print out the meter record, press cal and then print. The record print-out contains:

- A calibration record with the data of the last calibration
- The settings of the configuration menu
- A record of the last meter self-test
3 Troubleshooting and Maintenance

Error messages

Range limits exceeded If a measured value lies outside the ranges accepted by the meter, an error message appears and the measured-value display flashes.

ERROR 1 The measurement range was exceeded.

Possible causes:
- Sensor defective
- Break in sensor cable
- Wrong sensor connected
- Wrong cell constant entered

ERROR 3 The measured temperature is outside the ranges:
- Conductivity: -20 °C to +120 °C
- nLF: 0 °C to 120 °C
- Salinity: 0 °C to 30 °C
- TDS: 10 °C to 40 °C

Possible causes:
- Temperature probe in sensor defective
- Short circuit in temperature probe
- Wrong temperature probe connected

Note When changing the conductivity sensor, note that the temperature probe type (Pt 1000/NTC 30 kΩ/C0087) is only recognized when the meter is switched on with on/off.

Calibration error messages If errors occur during calibration, or if the determined sensor data are outside the valid range, an error message appears (ERROR 6, ERROR 11).

Maintenance and Troubleshooting 24
ERROR 6 The cell constant lies outside the permissible range < 0.01 cm⁻¹ or > 199.9 cm⁻¹.

Possible causes:

- No sensor connected during calibration
- Wrong calibration solution
- Sensor not immersed far enough in calibration solution

ERROR 11 The calibration was cancelled after approx. 2 minutes, because the drift was too large. This message only appears briefly during calibration.

Possible causes:

- Sensor defective or dirty
- Sensor cable insufficiently shielded or defective
- Strong electric fields influence the measurement
- Major temperature fluctuation of the calibration solution
- Calibration solution unstable
- Conductive connection between potential to ground, PC, meter and measuring medium

ERROR 14 If the clock has not been set, e.g. after battery replacement, this error message is displayed. To clear the message, set the clock (see Pg. 20).
If errors occur during transmission via the RS 232 interface, this error message appears. To eliminate the error message, switch the meter off and then on again. Should the error message occur again, check the settings in the Configuration menu.

Possible causes:

- Wrong transmission rate (baud rate) set
 (see Pg. 9)
- Error during transmission
- Wrong data format (see Pg. 21) e.g. parity bit

If the meter determines an error during the self-test, an error message appears.

Possible causes:

- Configuration or calibration data are defective.
 Completely reconfigure and recalibrate the meter.

Error in the factory settings or system memory. “FAIL” appears in the display.

Possible causes:

- EPROM or RAM defective
- Error in meter factory settings

This error message should normally not occur, as the data are protected from loss with multiple safety functions. Should this error message nevertheless appear, no remedy is available. The meter must be repaired and recalibrated at the factory.

Note
Changing batteries

When the battery symbol appears in the display, the batteries need replacement. However, the meter can still be used for a few days. If the battery voltage continues to drop, the meter will switch itself off. (Since battery consumption is higher when the remote interface is used, the battery symbol is displayed earlier.)

Never change the batteries within a hazardous area. Use only alkaline AA (or LR 6) cells. Make sure that the meter is carefully closed again and the protective cover with the rating plate is properly mounted on the meter after changing the batteries.

To replace the batteries, you need 3 alkaline AA cells and a screwdriver (either straight-blade or Phillips).

☐ Close the protective cover and remove the sensor container.
☐ Lift the hook, unscrew the four screws on the back of the meter and remove the lid.
☐ Remove the old batteries from the battery holder.
☐ Insert the new batteries in the specified direction.
☐ Make sure the protective cover is in the notches provided and the rubber seal is correctly seated, especially near the sensor socket.
☐ Remount the lid and secure it with the screws. Be sure to tighten the screws thoroughly.
☐ Remount the sensor container.

Note

When changing the batteries, all calibration and configuration data and the memory contents are retained. The time and date must be reset. The current memory location number of the data memory is set to 00.
After battery replacement recording will also be continued with memory location 00 when the meter is in the datalogger mode “Continue”. If you have stored measured values before battery replacement and you do not want to overwrite them, set the first memory location to be written with RCL and ▲ or ▼ before restarting the datalogger.

Warning
If you want to store the meter for a longer time, the batteries must always be removed beforehand. Leaky batteries may damage the meter.

Cleaning the meter

To remove dust and dirt, the external surfaces of the meter may be cleaned with water, and also with a mild household cleaner if necessary.

Warning
Beware of electrostatic charging when using the meter in hazardous areas!
For example, never wipe the meter with a dry cloth.
Accessories

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008717</td>
<td>Printer</td>
</tr>
<tr>
<td>1008718</td>
<td>Printer paper (5 rolls)</td>
</tr>
<tr>
<td>1008719</td>
<td>Printer ribbon (5 pieces)</td>
</tr>
<tr>
<td>1008716</td>
<td>Sensor container 5 pieces (for leak-proof storage of the sensors)</td>
</tr>
<tr>
<td>1008723</td>
<td>Sensor LF 204 4-electrode cell</td>
</tr>
<tr>
<td></td>
<td>Material: epoxy/graphite</td>
</tr>
<tr>
<td></td>
<td>Cell constant 0.475 cm$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Range: 0.1 μS/cm – 500 mS/cm</td>
</tr>
</tbody>
</table>

Note

For calibrating the 4-electrode cell, you can use the conductivity standard by Merck, Merck Order No.: 1203, for example. (KCl solution 0.01 mol/l, retraceable to RSM by NIST)
Specifications for Portamess® 913 (X) Cond

| Ranges | Conductivity: 0.1 µS/cm to 1,000 mS/cm
 | (c > 0.8 cm⁻¹)
 | 0.1 µS/cm to 500 mS/cm
 | (c = 0.2 to 0.8 cm⁻¹)
 | 0.01 µS/cm to 199.9 µS/cm
 | (c < 0.2 cm⁻¹)
|----------|--
| Temperature: | −20.0 to +120.0 °C / −4 to +248 °F
| | nLF: 0 to +120 °C
| Salinity: | 0.0 to 45.0 g/kg (0 to 30 °C)
| TDS: | 0 to 1,999 mg/l (10 to 40 °C)
| Display | LCD 35 x 67 mm, character height 15 mm
| Measurement cycle | Approx. 2 sec
| Measurement error (± 1 count) | Conductivity: < 0.5 % of measured value¹
| | Temperature: < 0.3 K
| Input 1 (Sensor) | Multi-contact for 2 and 4-electrode sensors with integrated temperature probe
| Input 2 (Temperature) | 4 mm sockets for separate Pt 1000 / NTC (30 kΩ) temperature probe
| Permissible cell constant | 0.010 to 199.9 cm⁻¹ (adjustable)
| Sensor standardization | Direct entry of the cell constant, automatic determination of the cell constant with KCl solution 0.01 mol/l or 0.1 mol/l, sensor standardization with any known solutions
| Meter self-test | During switch-on routine, segment test, memory test, display of model number and software version
| Temperature measurement | Pt 1000 / NTC 30 kΩ (automatic recognition during switch-on) or manual temperature entry
| Temperature compensation | Linear characteristic: 0.01 to 9.99 %/°C nLF (non-linear characteristic for ultrapure water and natural water to EN 27088 (DIN 38404.8)
| Data memory | 100 memory locations: conductivity, salinity or TDS, with temperature, date and time
| Datalogger | Manual, interval-controlled or event-controlled ¹

¹) configurable
¹) For conductivities > 500 mS/cm < 1 % meas. value
Remote interface
Serial RS 232 interface, bidirectional, asynchronous, baud rate user-defined (600 to 9,600 baud), can be used as either printer or computer interface

Data retention
Configuration/calibration data and factory settings >10 years

Automatic switch-off
After either 1 or 12 hours*, ineffective during interface or datalogger operation

Emission interference
EN 61 326 Class B

Immunity to ESD
EN 61 326, EN 61 326/A1, NAMUR NE 21

Explosion protection
EEEx ia IIC T6

Ambient temperature
Configuration/calibration data and factory settings >10 years

Automatic switch-off
After either 1 or 12 hours*, ineffective during interface or datalogger operation

Emission interference
EN 61 326 Class B

Immunity to ESD
EN 61 326, EN 61 326/A1, NAMUR NE 21

Explosion protection
EEEx ia IIC T6

Specifications for Lab Printer

Printer type
Matrix printer

Interface
Serial RS 232 interface

Paper
Normal paper, width 57.5 mm (2.25 inches)

Data transfer
Baud rate: 4,800 baud, data bits: 7, stop bits: 1, parity: even

Power supply
230 Vac ± 10 %

Dimensions
197 x 73 x 153 mm (W x H x D)

Weight
Approx. 1.2 kg incl. plug-in mains adapter

*) configurable
2) Due to storage, the service life of the included battery may be shorter.
Certificate of conformity
To protect the batteries, the meter switches off automatically when not operated for a longer period. Switch-off can take place after either one hour or twelve hours. When the datalogger is active, the meter is not switched off.

Key for activating calibration.

Adjustment of the conductivity meter to the cell constant of the sensor used.

Solution with exactly defined conductivity for calibrating a conductivity meter.

The datalogger records up to 100 measured values together with the temperature, date and time in the data memory. Recording takes place either interval or event-controlled (measured-value difference) or manually at the push of a button.

Up to 100 measured values can be stored in the data memory together with the temperature, time and date. See TDS.

Good Laboratory Practice: Rules for conducting and documenting measurements in the laboratory.

Pressing this key returns to the measuring mode from all other levels. In the measuring mode Cond the set temperature compensation is displayed by pressing meas, in the TDS mode the TDS factor.

German committee for measurement and control standards in the chemical industry.

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic switch-off (AutOFF)</td>
<td>To protect the batteries, the meter switches off automatically when not operated for a longer period. Switch-off can take place after either one hour or twelve hours. When the datalogger is active, the meter is not switched off.</td>
</tr>
<tr>
<td>Cal</td>
<td>Key for activating calibration.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Adjustment of the conductivity meter to the cell constant of the sensor used.</td>
</tr>
<tr>
<td>Calibration solution</td>
<td>Solution with exactly defined conductivity for calibrating a conductivity meter.</td>
</tr>
<tr>
<td>Datalogger</td>
<td>The datalogger records up to 100 measured values together with the temperature, date and time in the data memory. Recording takes place either interval or event-controlled (measured-value difference) or manually at the push of a button.</td>
</tr>
<tr>
<td>Data memory</td>
<td>Up to 100 measured values can be stored in the data memory together with the temperature, time and date. See TDS.</td>
</tr>
<tr>
<td>Evaporation residue</td>
<td>See TDS.</td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice: Rules for conducting and documenting measurements in the laboratory.</td>
</tr>
<tr>
<td>meas</td>
<td>Pressing this key returns to the measuring mode from all other levels. In the measuring mode Cond the set temperature compensation is displayed by pressing meas, in the TDS mode the TDS factor.</td>
</tr>
<tr>
<td>NAMUR</td>
<td>German committee for measurement and control standards in the chemical industry</td>
</tr>
<tr>
<td>nLF</td>
<td>Non-linear temperature compensation for ultrapure water with NaCl traces and for natural water to EN 27088 (DIN 38404-8), reference temperature = 25 °C.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Response time</td>
<td>Time from the start of a calibration step to the stabilization of the measured value.</td>
</tr>
<tr>
<td>Salinity</td>
<td>The salinity indicates the salt content, particularly of sea waters as a cumulative parameter. It is specified in g/kg (%).</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids, corresponds to the concentration of the dissolved solids contributing to the conductivity – comparable to the evaporation residue.</td>
</tr>
</tbody>
</table>
Index

A
Accessories, 29
Automatic switch-off (AutOFF), 2
description, 34
setting, 9

B
Baud rate, setting, 9

C
Calibration, 11
collection, 8
description, 34
direct entry of cell constant, 12
with any calibration solution, 14
with KCl solution, 13
Calibration solution, description,
34
Certificate of conformity, 32
Changing batteries, 27
Cleaning the meter, 28
Clock mode, 20
Conductivity measurement, 15
Configuration, 8
Configuration menu, 8
Connecting, interface, 22
Connection interface, 6
sensor, 6
separate temperature probe, 6
Connection assignment, 6

D
Data memory, 17
description, 34
Datalogger, 18
description, 34
setting, 18, 19
Date format, configuring, 10
Design, 3
Display, 4

E
Error messages, 24–26
Evaporation residue
description, 34
measuring, 16

F
Function, configuration, 8

G
Glossary, 34
GLP, description, 34

I
Interface, 21
command set, 21
configuring, 9
data format, 21
parameters, 21
protocol, 21
Interface assignments, interface,
22
Interface cable, 22
Interface parameters, 21

K
Keypad, 4
L
Lab Printer, standard settings, 22

M
Maintenance, 27
Manual temperature specification, 16
Measured values, storing, 17
Measurement, 15
Measuring, 15
conductivity, 15
salinity, 16
TDS, 16
Measuring mode, 15
Memory
 clearing, 17
 reading, 17
 writing, 17

N
NAMUR, description, 34
nLF, description, 35

P
Package contents, 1
Printer, standard settings, 22
Printing
 measured values, 22
 records, 22

R
Response time, description, 35
RS-232 interface, 21

S
Safety precautions, III
Salinity, description, 35
Salinity measurement, 16
Saving, measured values, 17
Sensors, connection, 6
Setting clock, 20
Short description, 1
Specifications, 30
 printer ZU 0244, 31
Start-up, 6
Storing, 17
 automatic, 18
 measured values, 17
Switch-off, automatic, 9

T
TDS
description, 35
measurement, 16
setting factor, 16
Temperature compensation, 15
Temperature display, configuring, 9
Time format, configuring, 10
Addresses and delivery information from the manufacturer:

ProMinent Dosientechnik GmbH
Im Schuhmachergewann 5–11
D-69123 Heidelberg

Postfach 10 17 60
D-69007 Heidelberg – Germany

Phone: +49 (06221) 842-0
Fax: +49 (06221) 842-419
info@prominent.de
www.prominent.de