Operating instructions
Diaphragm Motor-Driven Metering Pump
Sigma / 1 Base Type S1Ba

Two sets of operating instructions are required for the safe, correct and proper operation of the metering pumps: The product-specific operating instructions and the "General Operating Instructions for ProMinent® motor-driven metering pumps and hydraulic accessories".
Both sets of operating instructions are only valid when read together.

Please carefully read these operating instructions before use! Do not discard!
The operator shall be liable for any damage caused by installation or operating errors!
Technical changes reserved.
Table of contents

1 Identity code S1Ba .. 4
2 Safety chapter .. 6
3 Storage, transport and unpacking ... 9
4 Overview of equipment and control elements 11
5 Functional description ... 13
 5.1 Drive unit .. 13
 5.2 Liquid end .. 14
 5.3 Integral relief valve .. 14
 5.4 Multi-layer safety diaphragm ... 15
6 Assembly ... 17
7 Installation ... 19
 7.1 Installation, hydraulic ... 19
 7.2 Installation, electrical ... 23
8 Start up ... 26
9 Maintenance .. 30
10 Repairs .. 32
 10.1 Cleaning valves ... 32
 10.2 Replacing the metering diaphragm ... 34
11 Troubleshooting ... 36
12 Decommissioning .. 38
13 Technical data ... 40
 13.1 Performance data ... 40
 13.2 Shipping weight ... 41
 13.3 Wetted materials .. 42
 13.4 Ambient conditions .. 42
 13.4.1 Ambient temperatures ... 42
 13.4.2 Media temperatures ... 42
 13.4.3 Air humidity .. 42
 13.5 Motor data ... 43
 13.6 Stroke actuator ... 43
 13.7 Stroke control drive .. 44
 13.8 Diaphragm rupture sensor .. 44
 13.9 Stroke sensor "Sigma" ... 45
 13.10 Relay ... 45
 13.11 Sound pressure level .. 45
 13.12 Supplementary information for modified versions 45
14 EC Declaration of Conformity .. 47
15 Decontamination declaration .. 49
Identity code S1Ba

<table>
<thead>
<tr>
<th>S1Ba</th>
<th>Sigma 1 basic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Main power end, diaphragm</td>
</tr>
<tr>
<td>Type:</td>
<td>Power (at 50 Hz)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
</tr>
<tr>
<td>12017</td>
<td>10*</td>
</tr>
<tr>
<td>12035</td>
<td>10*</td>
</tr>
<tr>
<td>10050</td>
<td>10</td>
</tr>
<tr>
<td>10022</td>
<td>10</td>
</tr>
<tr>
<td>10044</td>
<td>10</td>
</tr>
<tr>
<td>07065</td>
<td>7</td>
</tr>
<tr>
<td>07042</td>
<td>7</td>
</tr>
<tr>
<td>04084</td>
<td>4</td>
</tr>
<tr>
<td>04120</td>
<td>4</td>
</tr>
</tbody>
</table>

Dosing head material

PV	PVDF
SS	Stainless steel

Seal material

| | |
| T | PTFE seal |

| **Displacement** |
S	Multi-layer safety diaphragm with optical break indicator
A	Multi-layer safety diaphragm with diaphragm rupture signalling (contact)
H	Diaphragm for hygienic pump head

| **Dosing head version** |
0	no valve springs
1	with 2 valve springs, Hastelloy C; 0.1 bar
4 **	with relief valve, FPM seal, no valve springs
5 **	with relief valve, FPM seal, with valve springs
6 **	with relief valve, EPDM seal, no valve springs
7 **	with relief valve, EPDM seal, with valve springs
H	Hygienic pump head with tri-clamp connectors (max. 10 bar)

Hydraulic connector

0	Standard threaded connector (in line with technical data)
1	Union nut and PVC insert
2	Union nut and PP insert
3	Union nut and PVDF insert
4	Union nut and SS insert
7	Union nut and PVDF hose nozzle
8	Union nut and SS hose nozzle
9	Union nut and SS welding sleeve

Version
<table>
<thead>
<tr>
<th>S1Ba</th>
<th>Sigma 1 basic type</th>
<th>0</th>
<th>With ProMinent® Logo (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Without ProMinent® Logo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>Modified*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* order-related version, for pump features see order paperwork</td>
</tr>
</tbody>
</table>

Electric power supply

	3 ph, 230 V/400 V 50/60 Hz
	1 ph AC, 230 V 50 Hz
	1 ph AC, 115 V 60 Hz
	3 ph, 230 V/400 V, 50 Hz, (Exe, Exd)
	3 ph, 265 V/440 V, 60 Hz, (Exe, Exd)
	3 ph, variable speed motor, 230/400 V
	Variable speed motor with integrated Frequency converter 1 ph, 230 V, 50/60 Hz
	Speed control complete 1 ph, 230 V, 50/60 Hz (control motor + frequency converter)
	No motor, with C 42 flange (NEMA)
	No motor, with B 5, size 56 (DIN)

Degree of protection

	IP 55 (standard)
	Exe version ATEX-T3
	Exd version ATEX-T4

Stroke sensor

	No stroke sensor (standard)
	Pacing relay (reed relay)
	Stroke sensor (Namur) for hazardous locations

Stroke length adjustment

	Manual (standard)
	With servomotor, 230 V, 50/60 Hz
	With servomotor, 115 V, 50/60 Hz
	With control motor 0...20 mA 230 V, 50/60 Hz
	With control motor 4...20 mA 230 V, 50/60 Hz
	With control motor 0...20 mA 115 V, 50/60 Hz
	With control motor 4...20 mA 115 V, 50/60 Hz

* for SST = 12 bar

** Standard with tube nozzle in the bypass Threaded connection on request.
2 Safety chapter

Explanation of the safety information

The following signal words are used in these operating instructions to identify different severities of a hazard:

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Denotes a possibly hazardous situation. If this is disregarded, you are in a life-threatening situation and this can result in serious injuries.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Denotes a possibly hazardous situation. If this is disregarded, it could result in slight or minor injuries or material damage.</td>
</tr>
</tbody>
</table>

Warning signs denoting different types of danger

The following warning signs are used in these operating instructions to denote different types of danger:

<table>
<thead>
<tr>
<th>Warning signs</th>
<th>Type of danger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning – high-voltage.</td>
</tr>
<tr>
<td></td>
<td>Warning – danger zone.</td>
</tr>
</tbody>
</table>

Correct and proper use

- The pump may only be used to dose liquid metering chemicals.
- In potentially explosive atmospheres in zone 1, device category II 2G of explosion group II C, the pump must only be operated according to the with the relevant nameplate (and the respective EC Declaration of Conformity) for pumps for potentially explosive atmospheres complying with Directive 94/9/EC in accordance with the European guidelines. The explosion group, category and protection class declared on the marking must correspond with or be better than the given conditions in the intended field of application.
- Only SST design pumps may be used with combustible feed chemicals.
- The pump may only be started up after it has been correctly installed and commissioned in accordance with the technical data and specifications contained in the operating instructions.
- The general limitations with regard to viscosity limits, chemical resistance and density must be observed - see also ProMinent resistance list (In the product catalogue or at www.prominent.com).
- Any other uses or modifications are prohibited.
- Pumps without the relevant nameplate (and the respective EC Declaration of Conformity) for pumps for potentially explosive atmospheres must never be operated in potentially explosive atmospheres.
- The pump is not intended for the dosing of gaseous media or solids.
- The pump is not intended for unprotected outside use.
- The pump should only be operated by trained and authorised personnel.
- You are obliged to observe the information contained in the operating instructions at the different phases of the device's service life.
WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
- Depressurise the system before commencing any work on hydraulic parts.

CAUTION!
Warning of feed chemical spraying around
An unsuitable feed chemical can damage the parts of the pump contacted by the chemical.
- Take into account the resistance of the material contacted by the chemical when selecting the feed chemical - refer to the ProMinent ® resistance list in the product equipment catalogue or at www.prominent.com.

CAUTION!
Danger of personal and material damage
The use of untested third party parts can result in damage to personnel and material damage.
- Only fit parts to dosing pumps, which have been tested and recommended by ProMinent.

CAUTION!
Danger from incorrectly operated or inadequately maintained pumps
Danger can arise from a poorly accessible pump due to incorrect operation and poor maintenance.
- Ensure that the pump is accessible at all times.
- Adhere to the maintenance intervals.

CAUTION!
Warning of illegal operation
Observe the regulations that apply where the unit is to be installed.
Information in the event of an emergency

In the event of an electrical accident, disconnect the mains cable from the mains or press the emergency cut-off switch fitted on the side of the system!

If feed chemical escapes, also depressurise the hydraulic system around the pump as necessary. Adhere to the safety data sheet for the feed chemical.

Qualification of personnel

<table>
<thead>
<tr>
<th>Activity</th>
<th>Qualification level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage, transport, unpacking</td>
<td>Instructed personnel</td>
</tr>
<tr>
<td>Installation, installation of hydraulic system</td>
<td>Technical personnel</td>
</tr>
<tr>
<td>Installation, electrical</td>
<td>Electrical technician</td>
</tr>
<tr>
<td>Operation</td>
<td>Instructed personnel</td>
</tr>
<tr>
<td>Maintenance, repair</td>
<td>Technical personnel</td>
</tr>
<tr>
<td>Decommissioning, disposal</td>
<td>Technical personnel</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Technical personnel, electrical technician, instructed personnel</td>
</tr>
</tbody>
</table>

Explanation of the terms:

Qualified personnel

A qualified employee is deemed to be a person who is able to assess the tasks assigned to him and recognise possible dangers based on his/her technical training, knowledge and experience, as well as knowledge of pertinent regulations.

Note:

A qualification of equal validity to a technical qualification can also gained by several years employment in the relevant work area.

Electrical technician

Electrical technicians are deemed to be people, who are able to complete work on electrical systems and recognize and avoid possible dangers independently based on their technical training and experience, as well as knowledge of pertinent standards and regulations.

Electrical technicians should be specifically trained for the working environment in which they are employed and know the relevant standards and regulations.

Electrical technicians must comply with the provisions of the applicable statutory directives on accident prevention.

Instructed personnel

An instructed person is deemed to be a person who has been instructed and, if required, trained in the tasks assigned to him/her and possible dangers that could result from improper behaviour, as well as having been instructed in the required protective equipment and protective measures.

Customer Service department

Customer Service department refers to service technicians, who have received proven training and have been authorised by ProMinent or Pro-Maqua to work on the system.

Sound pressure level

Sound pressure level LpA < 70 dB in accordance with EN ISO 20361:2010-10

at maximum stroke length, maximum stroke rate, maximum back pressure (water)
3 Storage, transport and unpacking

Safety information

WARNING!
Only return metering pumps for repair in a cleaned state and with a flushed liquid end - refer to the section on decommis-sioning!

Only send metering pumps with a filled in Decontamination Declaration form. The Decontamination Declaration constitutes an integral part of an inspection / repair order. A unit can only be inspected or repaired when a Declaration of Decontamination Form is submitted that has been completed correctly and in full by an authorised and qualified person on behalf of the pump operator.

The "Decontamination Declaration Form" can be found in the Appendix or at www.prominent.com.

CAUTION!
Danger of material damage
The device can be damaged by incorrect or improper storage or transportation!
- The unit should only be stored or transported in a well packaged state - preferably in its original packaging.
- The packaged unit should also only be stored or transported in accordance with the stipulated storage conditions.
- The packaged unit should be protected from moisture and the ingress of chemicals.

Scope of supply

Compare the delivery note with the scope of supply:
- Metering pump with mains power cable
- If necessary, connector kit for hose/pipe connection
- Product-specific operating instructions with EC Declaration of Conformity and supplementary information CD for ProMinent pump operating instructions.
- As necessary, documents for options and accessories

Storage

Personnel: Technical personnel

1. Place the caps on the valves.

3. Preferably place the pump standing vertically on a pallet and secure against falling over.

4. Cover the pump with a tarpaulin cover - allowing rear ventilation.

Store the pump in a dry, closed shop under the following ambient conditions.
Ambient conditions

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum storage and transport temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum storage and transport temperature</td>
<td>+50</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum air humidity *</td>
<td>95</td>
<td>% rel. humidity</td>
</tr>
</tbody>
</table>

* non-condensing
4 Overview of equipment and control elements

Fig. 1: Overview of equipment and control elements S1Ba
1 Drive motor
2 Drive unit
3 Stroke length adjustment knob
4 Liquid end with relief valve
5 Diaphragm rupture sensor

Fig. 2: Sigma control elements
1 Relief valve
2 Diaphragm rupture sensor (visual)
Fig. 3: Adjusting the stroke length
- 100% = 2 rotations
- 50% = 1 rotation
- 1% = 1 scale mark on stroke adjustment dial

Fig. 4: Front cover for version with pacing relay
A Pacing relay cable
B Supply voltage cable for pacing relay PCB
The metering pump is an diaphragm pump, the stroke length of which can be adjusted. An electric motor (1) drives the pump. A worm gear (2) steps down its drive rotation A cam (3), in conjunction with the uptake fork (8) converts this into an oscillation movement of the slide rod (4). A return spring (5) presses the uptake fork together with the slide rod positively against the cam thus producing the reciprocal stroke. The stroke length can be adjusted by the stroke adjustment dial (6) and the shaft (7). The different stroke lengths are in effect caused by a limitation of the reciprocal strokes (see Illustration of the stroke movement on page 13). The slide rod transmits the stoke motion to the metering diaphragms.

Fig. 5: Section through the drive unit Sigma 1
1 Electric motor
2 Worm gear (not visible)
3 Eccentric cam
4 Slide rod
5 Return spring
6 Stroke adjustment dial
7 Shaft
8 Uptake fork

Illustration of the stroke movement

Fig. 6: Stroke movement at a) maximum stroke length and b) reduced stroke length.

s Stroke velocity
ω Angle of rotation of eccentric cam
+ Pressure stroke
- Suction stroke
5.2 Liquid end

The diaphragm (2) hermetically shuts off the pump volume of the dosing head (4) towards the outside. The suction valve (1) closes as soon as the diaphragm (2) is moved in to the dosing head (4) and the feed chemical flows through the discharge valve (3) out of the dosing head. The discharge valve (3) closes as soon as the diaphragm (2) is moved in the opposite direction due to the vacuum pressure in the dosing head and fresh feed chemical flows through the suction valve (1) into the dosing head. One cycle is thus completed.

![Cross-section through the liquid end](image)

1. Suction valve
2. Diaphragm
3. Discharge valve
4. Dosing head
5. Backplate
13. Safety diaphragm

5.3 Integral relief valve

The integral relief valve normally operates as a simple, directly controlled bleed valve. As soon as the pressure exceeds the pressure value, which is set using the large spring (1), it lifts the ball (2). The feed chemical then flows out through the hose connection (5), e.g. into a storage tank.

The integral relief valve can only protect the motor and the gear, and then only against impermissible positive pressure that is caused by the metering pump itself. It cannot protect the system against positive pressure.

The integral relief valve works as a bleed valve if the rotary dial (3) is turned clockwise up to the "open" stop: This relieves the high force caused by the large spring (1) which was acting on the ball (2) - the ball is now controlled by the low force of the small spring (4). The integral relief valve is, when used in this way, a priming aid for starting up the pump against pressure.
5.4 Multi-layer safety diaphragm

The multi-layer safety diaphragm has the same function as the conventional double diaphragm system with working and safety diaphragms; however it also has the advantage that both diaphragms are joined together in a single unit.

If the working layer (1) breaks, the feed chemical penetrates between the working and safety (2) layers and spreads out. The safety layer ensures that not feed chemical penetrates to the outside.

As soon as the feed chemical reaches the flap (3) on the edge of the multi-layer safety diaphragm, it inflates it. The flap presses a piston (4) in the membrane rupture sensor (5), so that this triggers.

With the visual diaphragm rupture sensor, the lowered red cylinder (6) springs forward beneath the transparent cover (7) so that it then becomes clearly visible - see Fig. 9.

With the electrical diaphragm rupture sensor, a switch is switched. A signalling device must be connected to signal the diaphragm rupture.

Fig. 9: Visual diaphragm rupture sensor, triggered and untriggered
Fig. 10: Section through the visual membrane rupture sensor Sigma (*Visual break indicator* version)

1 Working layer (≡ operating diaphragm)
2 Safety layer (≡ safety diaphragm)
3 Flap
4 Piston
5 Diaphragm rupture sensor
6 Cylinder, red
7 Cover, transparent
6 Assembly

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

CAUTION!
Danger of material damage
The device can be damaged by incorrect or improper storage or transportation!
- The unit should only be stored or transported in a well packaged state - preferably in its original packaging.
- The packaged unit should also only be stored or transported in accordance with the stipulated storage conditions.
- The packaged unit should be protected from moisture and the ingress of chemicals.

CAUTION!
Warning about personal and material damage
Personal and material damage may be caused if the unit is operated outside of the permissible ambient conditions.
- Please observe the permissible ambient conditions - refer to the chapter entitled "Technical Data".

WARNING!
Risk of electric shock
If water or other electrically conducting liquids penetrate into the drive housing, an electric shock may occur.
- Position the pump so that drive housing cannot be flooded.

WARNING!
The pump can break through the supporting floor or slide off it
- The supporting floor must be horizontal, smooth and permanently load-bearing.

Capacity too low
Vibrations can disturb the valves of the liquid end.
- The supporting floor must not vibrate.
CAUTION!
Danger from incorrectly operated or inadequately maintained pumps

Danger can arise from a poorly accessible pump due to incorrect operation and poor maintenance.
- Ensure that the pump is accessible at all times.
- Adhere to the maintenance intervals.

Position the pump so that control elements such as the stroke length adjustment knob, the indicating dial A or the oil inspection window are accessible.

In so doing, ensure there is enough space to carry out an oil change (vent screws, oil drain plugs, oil trough ...).

1. Discharge valve
2. Dosing head
3. Suction valve

Ensure there is sufficient free space (f) around the dosing head as well as the suction and discharge valve so that maintenance and repair work can be carried out on these components.

Capacity too low
If the valves of the liquid end do not stand upright, they cannot close correctly.
- The discharge valve must be upright.

Capacity too low
Vibrations can disturb the valves of the liquid end.
- Secure the metering pump so that no vibrations can occur.

Take the dimensions (m) for the fastening holes from the appropriate dimensional drawings or data sheets.

Fasten the pump base to the supporting floor using suitable screws.

Space requirement

![Diagram](image1.png)

Fig. 12

Liquid end alignment

![Diagram](image2.png)

Fig. 13

Fastening

![Diagram](image3.png)

Fig. 14
7 Installation

7.1 Installation, hydraulic

CAUTION!
Danger of personnel injury and material damage
The disregard of technical data during installation may lead to personal injuries or damage to property.
- Observe the technical data- refer to chapter "Technical Data" and, where applicable, the operating instructions of the accessories.

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Warning of feed chemical reactions to water
Feed chemicals that should not come into contact with water may react to residual water in the liquid end that may originate from works testing.
- Blow the liquid end dry with compressed air through the suction connector.
- Then flush the liquid end with a suitable medium through the suction connector.

WARNING!
The following measures are an advantage when working with highly aggressive or hazardous feed chemicals:
- Install a bleed valve with recirculation in the storage tank.
- Install an additional shut-off valve on the discharge or suction ends.

CAUTION!
Suction problems possible
For feed chemicals with a particle size greater than 0.3 mm, the valves may no longer close properly.
- Install a suitable filter in the suction line.
CAUTION!
Warning against the discharge line bursting
With a closed discharge line (e.g. due to a clogged discharge line or by closing a valve), the pressure that the metering pump generates can reach several times the permissible pressure of the system or the metering pump. This could lead to lines bursting resulting in dangerous consequences with aggressive or toxic feed chemicals.

- Install a relief valve that limits the pressure of the pump to the maximum permissible operating pressure of the system.

CAUTION!
Warning against bursting of the suction or discharge lines
Hose lines with insufficient pressure rating may burst.

- Only use hose lines with the required pressure rating.

CAUTION!
Warning against lines disconnecting
With suction, discharge and relief lines installed incorrectly can loosen / disconnect from the pump connection.

- Only use original hoses with the specified hose diameter and wall thickness.
- Only use clamping rings and hose nozzles that correspond with the respective hose diameter.
- Always connect the lines without mechanical tension.

CAUTION!
Warning against leaks
Leaks can occur on the pump connection depending on the insert used.

- The pump is supplied with PTFE moulded composite seals with a flare, which are used for the pump connections. They seal the connections between grooved pump valves and the grooved inserts from ProMinent - see Fig. 15.
- In the event that an unflared insert is used (e.g. third party part), an elastomer flat seal must be used - see Fig. 16.

Numerous installation instructions with drawings are contained in the “General Operating Instructions for ProMinent® metering pumps and hydraulic accessories”.

- Precise metering is only possible when the back pressure is maintained above 1 bar at all times.
- If metering at atmospheric pressure, a back pressure valve should be used to create a back pressure of approx. 1.5 bar.
CAUTION!

Warning of backflow

A back pressure valve, spring-loaded injection valve, relief valve, foot valve or a liquid end do not represent absolutely leak-tight closing elements.

- For this purpose use a shut-off valve, a solenoid valve or a vacuum breaker.

CAUTION!

Warning of illegal operation

Observe the regulations that apply where the unit is to be installed.

CAUTION!

To check the pressure conditions in the piping system it is recommended that connecting options are provided for a manometer close to the suction and pressure connector.

1. Manometer socket
2. Discharge line (pipe)
3. Discharge valve
4. Suction valve
5. Suction line (pipe)

CAUTION!

Connect the pipelines to the pump so that no residual forces act on the pump, e.g. due to the offsetting, weight or expansion of the line.

Only connect steel or stainless steel piping via a flexible piping section to a plastic liquid end.

1. Steel pipeline
2. Flexible pipe section
3. Plastic liquid end

CAUTION!

Danger due to incorrect use of the integral relief valve

The integral relief valve can only protect the motor and the gear, and then only against impermissible positive pressure that is caused by the metering pump itself. It cannot protect the system against positive pressure.

- Protect the motor and gear of the system against positive pressure using other mechanisms.
- Protect the system against illegal positive pressure using other mechanisms.
CAUTION!
Warning of feed chemical spraying around
If no relief valve was connected to the overflow line, the feed chemical sprays out of the hose connection as soon as the relief valve opens.

- An overflow line must always be connected to the integral relief valve and be fed back to the storage tank or - if required by the regulations - into a special storage tank.

CAUTION!
Danger of cracking
Cracking of the PVT liquid end can occur if a metal overflow line is connected to the relief valve.

- Never connect a metal overflow line to the relief valve.

CAUTION!
Danger of the integral relief valve failing
The integral relief valve no longer operates reliably with feed chemicals having a viscosity of greater than 200 mPa s.

- Only use the integral relief valve with feed chemicals having a viscosity up to 200 mPa s.

CAUTION!
Warning against leaks
Feed chemical which remains in the overflow line at the relief valve, can attack the valve or cause it to leak

- Route the overflow line with a continuous slope and moreover with the tube nozzle pointed downwards - see Fig. 19.

If the overflow line is fed into the suction line, the bleed function is blocked.
Therefore lead the overflow line back into the storage tank.

When operating the integral relief valve close to the opening pressure, a minimal overflow into the overflow line can occur.

CAUTION!
Danger resulting from unnoticed diaphragm rupture
If the pump has been ordered with an electric diaphragm rupture sensor, it still has to be installed.

- Screw the enclosed diaphragm rupture sensor into the liquid end (no seal necessary).
7.2 Installation, electrical

WARNING!
Danger of electric shock
Unprofessional installation may lead to electric shocks.
- All cable cores cut to length must be provided with cable end sleeves.
- The Installation, electrical of the device may only be undertaken by technically trained personnel.

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!

Personnel:
- Electrician

What requires electrical installation?
- Motor
- External fan (option)
- Stroke control drive (Option)
- Stroke adjusting drive (Option)
- Diaphragm rupture sensor (Option)
- Stroke sensor (Option)
- Pacing relay (option)
- Frequency converter (option)
Installation

Motor

CAUTION!
Pump can be damaged
The pump can be damaged if the motor drives the pump in the wrong direction.

– When connecting the motor, pay attention to the correct direction of rotation indicated by the arrow on the fan cover, as shown in Fig. 20.

1. Install a motor protection switch, as the motors have no fuse.
2. Install an emergency cut-off switch or include the motor in the emergency cut-off management of the system.
3. Use a suitable cable between the motor terminal box and power supply.

– Key motor data can be found on the unit nameplate.
– Motor data sheets can be requested for more information.
– The terminal wiring diagram is located in the terminal box.
– Notes on the speed controlled motor with external fan and temperature monitoring can be found in the "General operating instructions for ProMinent® motor-driven metering pumps and hydraulic accessories"!

Diaphragm rupture sensor (Option)

WARNING!
Risk of electric shock
In event of a defect, there is a risk of electric shock when conductive feed chemical are used.
– For safety reasons we recommend connecting to a protective low voltage, e.g. in accordance with EN 60335-1 (SELV).

CAUTION!
Danger resulting from unnoticed diaphragm rupture
If the pump has been ordered with an electric diaphragm rupture sensor, it must also be electrically installed.
– Install the enclosed diaphragm rupture sensor electrically to a suitable monitoring device.

a) Diaphragm rupture sensor with switch contact

– The cable can be poled as required.

b) Namur sensor, inherently safe
The monitor / power supply installed by the customer must be able to evaluate the current variations of the Namur sensor for indicating a diaphragm rupture!
Stroke sensor (identity code specification “Stroke sensor”: 3)

Connect the stroke sensor to a suitable monitoring device according to the technical data provided with the monitoring device and that of the stroke sensor - see chapter “Technical data”.

Pacing relay (identity code specification “Stroke sensor”: 2)

1. Install the cable which originates from the pacing relay - see the figure in the chapter entitled “Overview of equipment and control elements”: Cable A, left.

 The cable polarity is unimportant.

2. Install the power supply cable to the pacing relay PCB - see the figure in the chapter entitled “Overview of equipment and control elements”: Cable B, right.

 CAUTION!
 Warning of overload
 If the current through the relay becomes too high, it can be destroyed by heating.
 - Fit a circuit breaker.

Pacing relay terminal output data

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage</td>
<td>24</td>
<td>VDC</td>
</tr>
<tr>
<td>Maximum current</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Closing duration, approx.</td>
<td>100</td>
<td>ms</td>
</tr>
<tr>
<td>Service life *</td>
<td>50 x 10^6 (10 V, 10 mA)</td>
<td>Play</td>
</tr>
</tbody>
</table>

* at rated load

The contacts are potential-free.

The pacing relay is a N/O as standard.

Supply voltage for pacing relay PCB

<table>
<thead>
<tr>
<th>Available supply voltages</th>
<th>Mains supply frequency</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V AC (180-254 V)</td>
<td>50 / 60 Hz</td>
<td>10 mA (at 230 V, 50 Hz)</td>
</tr>
<tr>
<td>115 V AC (90-134 V)</td>
<td>50 / 60 Hz</td>
<td>15 mA (at 115 V, 60 Hz)</td>
</tr>
<tr>
<td>24 V DC (20-28 V)</td>
<td>-</td>
<td>10 mA (at 24 V DC)</td>
</tr>
</tbody>
</table>

Other units

Install the other units according to their documentation.
8 Start up

Safety information

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Fire danger
Only with combustible media: These may start to burn when combined with oxygen.
- When filling and draining the liquid end, the feed chemical must not come into contact with oxygen.

CAUTION!
Warning about personal and material damage
Also observe the "General Operating Instructions for ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories"!

CAUTION!
Warning of personal injury and material damage
The metering pump may only be operated by trained personnel. The operator is responsible for ensuring that under the given operating conditions (pressure, temperature, corrosiveness, etc.) danger to the operating personnel is avoided by use of appropriate accident prevention measures.

CAUTION!
Feed chemical could escape
- Check suction and discharge lines, liquid end and valves for leak-tightness and tighten if necessary.
- Check whether the necessary flushing pipes are connected.

CAUTION!
Prior to commissioning check the drive motor and corresponding ancillary equipment is connected according to regulations.

CAUTION!
When using pumps with speed control, observe the instructions in the frequency converter operating instructions.
Checking the direction of rotation

When commissioning the unit, check whether the drive motor is rotating correctly - check this against the arrow on the motor housing or the diagram in the chapter entitled “Electrical Installation.”

Using the integral relief valve

CAUTION!
Danger due to incorrect use of the integral relief valve
The integral relief valve can only protect the motor and the gear, and then only against impermissible positive pressure that is caused by the metering pump itself. It cannot protect the system against positive pressure.

- Protect the motor and gear of the system against positive pressure using other mechanisms.
- Protect the system against illegal positive pressure using other mechanisms.

CAUTION!
Danger of the integral relief valve failing
The integral relief valve no longer operates reliably with feed chemicals having a viscosity of greater than 200 mPa s.

- Only use the integral relief valve with feed chemicals having a viscosity up to 200 mPa s.

Priming against pressure

1. Hydraulically isolate the discharge line from the pump using an isolation device.

2. Turn the rotary dial on the integral relief valve in a clockwise direction up to the “close” stop.
 - The excess pressure escapes through the hose connector.

3. Run the pump until the feed chemical coming out of the hose connector is free from bubbles.

4. Turn the rotary dial on the integral relief valve in a clockwise direction up to the “close” stop.
 - The pump can be started.

When operating the integral relief valve close to the opening pressure, a minimal overflow into the overflow line can occur.
Eliminating suction problems (only for single ball valves with PTFE ball seat)

For suction problems occurring during start up:
- Exclude the possibility that there are foreign bodies in the valve.
- Place the valve on a stable surface.
- Using a hammer (1) and a brass bar (2), gently tap the PTFE ball seat above the valve ball - see figure below.
- Then with the valve in a damp condition allow it to prime.

Fig. 21: Tapping the valve set disc

Adjusting the stroke length

Fig. 22: Adjusting the stroke length

- 100 % = 2 rotations
- 50 % = 1 rotation
- 1 % = 1 scale mark on stroke adjustment dial

Correctly adjusting the pump:
- Select as large a stroke length as possible for viscous feed chemicals.
- Select as large a stroke length as possible for outgassing feed chemicals.
- Select as high a stroke rate as possible for good mixing.
- Do not set the stroke length at less than 30 % for precise dosing.

Diaphragm rupture sensor

CAUTION!
Danger resulting from unnoticed diaphragm rupture

If the pump has been ordered with an electric diaphragm rupture sensor, it still has to be installed.
- Screw the enclosed diaphragm rupture sensor into the liquid end (no seal necessary).
CAUTION!

Warning of unnoticed diaphragm rupture

Only above approximately 2 bar system back pressure is a signal generated upon a diaphragm rupture.

- Only rely on the diaphragm rupture sensor at back pressures greater than 2 bar.
9 Maintenance

Safety information

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
It is mandatory that you read the safety information and specifications in the "Storage, Transport and Unpacking" chapter prior to shipping the pump.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
- Depressurise the system before commencing any work on hydraulic parts.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.

WARNING!
Danger of an electric shock
When working on the motor or electrical auxiliary equipment, there is a danger of an electric shock.
- Before working on the motor, take note of the safety instructions in its operating instructions!
- Should external fans, servomotors or other auxiliary equipment be installed, these should also be disconnected and checked that they are voltage free.

i
Place a spare parts kit in stock ready for maintenance work. You can find order numbers in the enclosed “Supplementary information CD for ProMinent pump operating instructions” under “Ordering information” - “Spare parts kits”.
Third party spare parts for the pumps may lead to problems when pumping.

- Use only original spare parts.
- Use the correct spare part kits. In case of doubt, refer to the exploded views and ordering information contained in the "Supplementary information CD for ProMinent® pump operating instructions".

Standard liquid ends:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly*</td>
<td>■ Check that the metering lines are fixed firmly to the liquid end.</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td>■ Check that the suction valve and discharge valve are correctly seated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Check that the dosing head screws are tight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Check the condition of the metering diaphragm - see ‘Check the condition of the metering diaphragm’ on page 31.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Check that the flow is correct: Allow the pump to prime briefly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Check that the electrical connections are intact</td>
<td></td>
</tr>
</tbody>
</table>

* Under normal loading (approx. 30 % of continuous operation).

Under heavy loading (e.g. continuous operation): shorter intervals.

Check the condition of the metering diaphragm

The metering diaphragm is a wear part, the service life of which is dependent upon the following parameters:

- System back pressure
- Operating temperature
- Feed chemical properties

When using abrasive feed chemicals, the diaphragm service life is reduced. In such cases, more frequent checking of the diaphragm is recommended.

Tightening torques

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightening torques for dosing head screws:</td>
<td>4.5 ... 5.0</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Liquid ends with integral relief valve

WARNING!

Warning of eye injuries

When opening the relief valve, a spring under high tension can jump out.
- Wear protective glasses.
10 Repairs

Safety information

10.1 Cleaning valves

Alarm! Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
– The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

Alarm! It is mandatory that you read the safety information and specifications in the "Storage, Transport and Unpacking" chapter prior to shipping the pump.

Alarm! Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
– Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
– Depressurise the system before commencing any work on hydraulic parts.

Alarm! Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
– Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
– Drain and flush the liquid end before working on the pump.

Alarm! Unsuitable spare parts for the valves may lead to problems for the pumps.
– Only use new components that are especially adapted to fit your valve (both in terms of shape and chemical resistance).
– Use the correct spare part kits. In case of doubt, refer to the exploded views and ordering information contained in the "Supplementary information CD for ProMinent® pump operating instructions".
Repairing ball valves

CAUTION!

Warning of personal injury and material damage
Feed chemical may escape from the liquid end, for example, if ball valves not repaired correctly.

- Only use new components which fit your valve - both in terms of shape and chemical resistance!

- Pay attention to the flow direction of the discharge and suction connectors when fitting the valve.

1. Unscrew the valve from the liquid end.
2. Screw the valve cap (5) on its suction side - see diagram.
3. Carefully remove the parts from the valve body (2).
4. Replace the worn parts.
5. Clean the remaining parts.
6. Check all parts.
7. Insert the valve ball (3 and the valve seat (4).
8. Screw on the valve cap (5).

Fig. 23: Simple cross-section through ball valve

1 Flat seal
2 Valve body
3 Valve ball
4 Valve seat
5 Valve cap
10.2 Replacing the metering diaphragm

Third party spare parts for the pumps may lead to problems when pumping.
- Use only original spare parts.
- Use the correct spare part kits. In case of doubt, refer to the exploded views and ordering information contained in the “Supplementary information CD for ProMinent® pump operating instructions”.

Personnel: Technical personnel

Requirements:
- If necessary take protective measures.
- Observe the safety data sheet for the feed chemical.
- Depressurise the system.

1. Empty the liquid end: Place the liquid end on its head and allow the feed chemical to run out; flush out with a suitable medium; flush the liquid end thoroughly when using hazardous feed chemicals!

2. With the pump running, move the stroke adjustment dial to the stop at 0 % stroke length.
 - The drive axle is now difficult to turn.

3. Switch off the pump.

4. Unscrew the hydraulic connectors on the discharge and suction side.

5. Unscrew the diaphragm rupture sensor from the dosing head.

6. Remove the 6 screws on the dosing head.

7. Remove the dosing head.

8. Loosen the diaphragm from the drive axle with a gentle backwards turn in the anti-clockwise direction.

9. Completely unscrew the diaphragm from the drive axle.

10. Tentatively screw the new diaphragm anticlockwise up to the stop on the drive axle.
 - The diaphragm now is now seated against the stop of the thread while the diaphragm flap is within the tolerance range.

Fig. 24: Tolerance range of the flap on the backplate

1 Diaphragm
2 Backplate
3 Flap
A Tolerance range

11. Should this not work, remove dirt or swarf out of the thread and screw the diaphragm correctly onto the drive axle this time.
If this is still unsuccessful, contact ProMinent-ProMaqua customer service.

12. Place the dosing head with the screws onto the diaphragm - the suction connector must be pointing downwards in the pump's fitting position.

13. Tighten the screws gently to start with.

14. Screw the diaphragm rupture sensor into the dosing head.

15. Start up the pump and adjust the stroke length to 100%.

16. Stop the pump and tighten the screws crosswise. Tightening torque - see 'Tightening torques' on page 31.

17. Start the pump and at maximum pressure, check for leaks.

CAUTION!

Warning of escaping feed chemical
The liquid end may leak should it not be possible to check the tightening torque of the screws.

- Check the tightening torque of the screws after 24-hours of operation!
- With PP, PC and TT dosing heads also re-check the tightening torques quarterly!

Fig. 25: Cross-section through the liquid end

1. Suction valve
2. Metering diaphragm
3. Discharge valve
4. Dosing head
5. Backplate
13. Safety diaphragm

Tightening torques

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightening torques for dosing head screws:</td>
<td>4.5 ... 5.0</td>
<td>Nm</td>
</tr>
</tbody>
</table>
11 Troubleshooting

Safety information

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.
- The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Danger of an electric shock
Personnel working on electrical parts can be electrocuted if all electrical lines carrying current have not been disconnected.
- Disconnect the supply cable before working on the motor and prevent it from being reconnected accidentally.
- Any separately driven fans, servo motors, speed controllers or diaphragm rupture sensors fitted should also be disconnected.
- Check that the supply cables are de-energised.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.
- Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
- Drain and flush the liquid end before working on the pump.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.
- Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
- Depressurise the system before commencing any work on hydraulic parts.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Fault description</th>
<th>Cause</th>
<th>Remedy</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump does not prime in spite of full stroke motion and bleeding</td>
<td>The valves are dirty or worn.</td>
<td>Repair the valves - see chapter entitled "Repair".</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The feed chemical has particles larger than 3 mm.</td>
<td>Install a suitable filter in the suction line.</td>
<td>Technical personnel</td>
</tr>
<tr>
<td></td>
<td>Pump does not reach high pressure rates.</td>
<td>The valves are dirty or worn.</td>
<td>Repair the valves - see chapter entitled "Repair".</td>
<td>Technical personnel</td>
</tr>
<tr>
<td>Fault Description</td>
<td>Cause</td>
<td>Remedy</td>
<td>Personnel</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>The motor is wired incorrectly.</td>
<td>1. Check the mains voltage and mains frequency.</td>
<td>2. Wire the motor correctly.</td>
<td>Electrician</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The mains voltage has failed.</td>
<td>Eliminate the cause.</td>
<td>Electrician</td>
<td></td>
</tr>
<tr>
<td>Fluid is escaping from the end disc</td>
<td>The dosing head screws are no longer tight enough.</td>
<td>Tighten the screws crosswise to the specified tightening torque.</td>
<td>Technical personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The diaphragm leaks.</td>
<td>Replace the diaphragm - refer to the "Repair" chapter.</td>
<td>Technical personnel</td>
<td></td>
</tr>
<tr>
<td>Large leaks occur at the relief valve.</td>
<td>The ball or ball seat are dirty or worn.</td>
<td>Clean or replace the ball and ball seat.</td>
<td>Technical personnel</td>
<td></td>
</tr>
<tr>
<td>The diaphragm rupture sensor has triggered.</td>
<td>The operating diaphragm has ruptured.**</td>
<td>Replace the diaphragm - refer to the "Repair" chapter.</td>
<td>Technical personnel</td>
<td></td>
</tr>
<tr>
<td>The drive motor is very hot.</td>
<td>The discharge line is seriously constricted.</td>
<td>Rectify any constriction of the discharge line.</td>
<td>Technical personnel</td>
<td></td>
</tr>
<tr>
<td>All other faults.</td>
<td>Other causes.</td>
<td>Call ProMinent ProMaqua customer services.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If necessary use the cross-section drawing of the integral relief valve in the "Functional Description" chapter.

WARNING!

Warning of eye injuries

When opening the relief valve, a spring under high tension can jump out.
- Wear protective glasses.

WARNING!

Warning of escaping feed chemical

When dosing combustible feed chemicals or in hazardous locations, under no circumstances must the second diaphragm also rupture.
- If the pump membrane rupture sensor triggers, stop the pump immediately and only restart once a new multi-layer safety diaphragm is fitted.

CAUTION!

Warning of inaccurate dosing

Once the operating membrane has ruptured, precise dosing of the pump can no longer be guaranteed.
- Do not continue to use the pump for critical process dosing.
- For uncritical processes, the pump can continue to be operated for some time after the break in emergency service mode at full operating pressure and free from leaks up until replacement of the diaphragm.
12 Decommissioning

Decommissioning

WARNING!
Warning about personal and material damage
EX pumps only: When operating in EX areas, certain subjects must be observed.

– The chapter "Important supplements for metering pumps in EX zones" of the "General Operating Instructions on ProMinent® Motor-Driven Metering Pumps and Hydraulic Accessories" must be observed in all cases.

WARNING!
Danger of an electric shock
When working on the motor or electrical auxiliary equipment, there is a danger of an electric shock.

– Before working on the motor, take note of the safety instructions in its operating instructions!
– Should external fans, servomotors or other auxiliary equipment be installed, these should also be disconnected and checked that they are voltage free.

WARNING!
Danger from chemical residues
There is normally chemical residue in the liquid end and on the housing after operation. This chemical residue could be hazardous to people.

– It is mandatory that the safety information relating to the "Storage, Transport and Unpacking" chapter is read before shipping or transporting the unit.
– Thoroughly clean the liquid end and the housing of chemicals and dirt. Adhere to the safety data sheet for the feed chemical.

WARNING!
Warning of hazardous or unknown feed chemical
Should a hazardous or unknown feed chemical be used, it may escape from the hydraulic components when working on the pump.

– Take appropriate protective measures before working on the pump (protective eyewear, protective gloves, ...). Read the safety data sheet on the feed chemical.
– Drain and flush the liquid end before working on the pump.

CAUTION!
Warning of feed chemical spraying around
Feed chemical can spray out of the hydraulic components if they are manipulated or opened due to pressure in the liquid end and adjacent parts of the system.

– Disconnect the pump from the mains power supply and ensure that it cannot be switched on again by unauthorised persons.
– Depressurise the system before commencing any work on hydraulic parts.
WARNING!
Warning of eye injuries
When opening the relief valve, a spring under high tension can jump out.
- Wear protective glasses.

CAUTION!
Danger of damage to the device
The device can be damaged by incorrect and improper storage or transportation.
- Take into account the information in the "Storage, Transport and Unpacking" chapter if the system is decommissioned for a temporary period.

(Temporary) decommissioning

Personnel:
- Technical personnel

1. Disconnect the pump from the mains power supply.
2. Depressurise and bleed the hydraulic system around the pump.
3. Empty the liquid end by turning the pump upside down and allowing the feed chemical to run out.
4. Flush the liquid end with a suitable medium - Observe the safety data sheet! Flush the dosing head thoroughly when using hazardous feed chemicals!
5. Possible additional work - see chapter "Storage, Transport and Unpacking".

Disposal

Personnel:
- Technical personnel

CAUTION!
Environmental hazard due to incorrect disposal
- Note the local guidelines currently applicable in your country, particularly in regard to electronic waste!
13 Technical data

Only for "M - modified" version:

![WARNING! Risk of personal injuries]

Please observe the "Supplement for modified version" at the end of the chapter!

It replaces and supplements the technical data!

13.1 Performance data

S1Ba under 50 Hz operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum pump capacity at maximum back pressure</th>
<th>Maximum stroke rate</th>
<th>Suction lift</th>
<th>Permissible priming pressure, suction side</th>
<th>Connector size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>l/h</td>
<td>ml/stroke</td>
<td>Strokes/min</td>
<td>m WS</td>
</tr>
<tr>
<td>12017 PVT</td>
<td>12</td>
<td>17</td>
<td>4.0</td>
<td>73</td>
<td>7</td>
</tr>
<tr>
<td>12017 SST</td>
<td>12</td>
<td>17</td>
<td>4.0</td>
<td>73</td>
<td>7</td>
</tr>
<tr>
<td>12035 PVT</td>
<td>12</td>
<td>35</td>
<td>4.0</td>
<td>143</td>
<td>7</td>
</tr>
<tr>
<td>12035 SST</td>
<td>12</td>
<td>35</td>
<td>4.0</td>
<td>143</td>
<td>7</td>
</tr>
<tr>
<td>10050 PVT</td>
<td>10</td>
<td>50</td>
<td>4.0</td>
<td>205</td>
<td>7</td>
</tr>
<tr>
<td>10050 SST</td>
<td>10</td>
<td>50</td>
<td>4.0</td>
<td>205</td>
<td>7</td>
</tr>
<tr>
<td>10022 PVT</td>
<td>10</td>
<td>22</td>
<td>5.1</td>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>10022 SST</td>
<td>10</td>
<td>22</td>
<td>5.1</td>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>10044 PVT</td>
<td>10</td>
<td>44</td>
<td>5.1</td>
<td>143</td>
<td>6</td>
</tr>
<tr>
<td>10044 SST</td>
<td>10</td>
<td>44</td>
<td>5.1</td>
<td>143</td>
<td>6</td>
</tr>
<tr>
<td>07065 PVT</td>
<td>7</td>
<td>65</td>
<td>5.1</td>
<td>205</td>
<td>6</td>
</tr>
<tr>
<td>07065 SST</td>
<td>7</td>
<td>65</td>
<td>5.1</td>
<td>205</td>
<td>6</td>
</tr>
<tr>
<td>07042 PVT</td>
<td>7</td>
<td>42</td>
<td>9.7</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>07042 SST</td>
<td>7</td>
<td>42</td>
<td>9.7</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>04084 PVT</td>
<td>4</td>
<td>84</td>
<td>9.7</td>
<td>143</td>
<td>3</td>
</tr>
<tr>
<td>04084 SST</td>
<td>4</td>
<td>84</td>
<td>9.7</td>
<td>143</td>
<td>3</td>
</tr>
<tr>
<td>04120 PVT</td>
<td>4</td>
<td>120</td>
<td>9.7</td>
<td>205</td>
<td>3</td>
</tr>
<tr>
<td>04120 SST</td>
<td>4</td>
<td>120</td>
<td>9.7</td>
<td>205</td>
<td>3</td>
</tr>
</tbody>
</table>

All figures refer to water at 20 °C.
The suction lift applies to filled suction line and filled liquid end - when installed correctly.
Technical data

S1Ba under 60 Hz operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum pump capacity at maximum back pressure</th>
<th>Maximum stroke rate</th>
<th>Suction lift</th>
<th>Permissible priming pressure, suction side</th>
<th>Connector size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>psi</td>
<td>l/h</td>
<td>gph</td>
<td>Strokes/min</td>
</tr>
<tr>
<td>12017 PVT</td>
<td>12</td>
<td>174</td>
<td>20</td>
<td>5.4</td>
<td>88</td>
</tr>
<tr>
<td>12017 SST</td>
<td>12</td>
<td>174</td>
<td>20</td>
<td>5.4</td>
<td>88</td>
</tr>
<tr>
<td>12035 PVT</td>
<td>12</td>
<td>174</td>
<td>42</td>
<td>11.1</td>
<td>172</td>
</tr>
<tr>
<td>12035 SST</td>
<td>12</td>
<td>174</td>
<td>42</td>
<td>11.1</td>
<td>172</td>
</tr>
<tr>
<td>10050 PVT</td>
<td>10</td>
<td>145</td>
<td>60</td>
<td>15.9</td>
<td>246</td>
</tr>
<tr>
<td>10050 SST</td>
<td>10</td>
<td>145</td>
<td>60</td>
<td>15.9</td>
<td>246</td>
</tr>
<tr>
<td>10022 PVT</td>
<td>10</td>
<td>145</td>
<td>26</td>
<td>7.0</td>
<td>88</td>
</tr>
<tr>
<td>10022 SST</td>
<td>10</td>
<td>145</td>
<td>26</td>
<td>7.0</td>
<td>88</td>
</tr>
<tr>
<td>10044 PVT</td>
<td>10</td>
<td>145</td>
<td>52</td>
<td>13.9</td>
<td>172</td>
</tr>
<tr>
<td>10044 SST</td>
<td>10</td>
<td>145</td>
<td>52</td>
<td>13.9</td>
<td>172</td>
</tr>
<tr>
<td>07065 PVT</td>
<td>7</td>
<td>102</td>
<td>78</td>
<td>20.6</td>
<td>246</td>
</tr>
<tr>
<td>07065 SST</td>
<td>7</td>
<td>102</td>
<td>78</td>
<td>20.6</td>
<td>246</td>
</tr>
<tr>
<td>07042 PVT</td>
<td>7</td>
<td>102</td>
<td>50</td>
<td>13.3</td>
<td>88</td>
</tr>
<tr>
<td>07042 SST</td>
<td>7</td>
<td>102</td>
<td>50</td>
<td>13.3</td>
<td>88</td>
</tr>
<tr>
<td>04084 PVT</td>
<td>4</td>
<td>58</td>
<td>100</td>
<td>26.6</td>
<td>172</td>
</tr>
<tr>
<td>04084 SST</td>
<td>4</td>
<td>58</td>
<td>100</td>
<td>26.6</td>
<td>172</td>
</tr>
<tr>
<td>04120 PVT</td>
<td>4</td>
<td>58</td>
<td>144</td>
<td>38</td>
<td>246</td>
</tr>
<tr>
<td>04120 SST</td>
<td>4</td>
<td>58</td>
<td>144</td>
<td>38</td>
<td>246</td>
</tr>
</tbody>
</table>

All figures refer to water at 20 °C.
The suction lift applies to filled suction line and filled liquid end - when installed correctly.

Accuracies

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducibility</td>
<td>±2</td>
<td>%</td>
</tr>
</tbody>
</table>

* - when installed correctly, under constant conditions, at least 30 % stroke length and water at 20 °C

13.2 Shipping weight

<table>
<thead>
<tr>
<th>Types</th>
<th>Material version</th>
<th>Shipping weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>12017 ... 07065</td>
<td>PVT</td>
<td>9</td>
</tr>
<tr>
<td>12017 ... 07065</td>
<td>SST</td>
<td>12</td>
</tr>
<tr>
<td>07042 ... 04129</td>
<td>PVT</td>
<td>10</td>
</tr>
<tr>
<td>07042 ... 04129</td>
<td>SST</td>
<td>14</td>
</tr>
</tbody>
</table>

Note:
- All figures refer to water at 20 °C.
- The suction lift applies to filled suction line and filled liquid end - when installed correctly.
13.3 Wetted materials

<table>
<thead>
<tr>
<th>Material version</th>
<th>Liquid end</th>
<th>Suction/discharge connector</th>
<th>Seals* / ball seat</th>
<th>Balls</th>
<th>Springs</th>
<th>Integral relief valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVT</td>
<td>PVDF</td>
<td>PVDF</td>
<td>PTFE/PTFE</td>
<td>Ceramic</td>
<td>Hastelloy C</td>
<td>PVDF/FPM or EPDM</td>
</tr>
<tr>
<td>SST</td>
<td>Stainless steel 1.4404</td>
<td>Stainless steel 1.4581</td>
<td>PTFE/PTFE</td>
<td>Stainless steel 1.4404</td>
<td>Hastelloy C</td>
<td>Stainless steel/FPM or EPDM</td>
</tr>
</tbody>
</table>

* Metering diaphragm is PTFE coated

13.4 Ambient conditions

13.4.1 Ambient temperatures

Pump, compl.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage and transport temperature</td>
<td>-10 ... +50</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature in operation (drive + motor):</td>
<td>-10 ... +40</td>
<td>°C</td>
</tr>
</tbody>
</table>

13.4.2 Media temperatures

PVT liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>65</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

SST liquid end

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature long-term at max. operating pressure</td>
<td>90</td>
<td>°C</td>
</tr>
<tr>
<td>Max. temperature for 15 min at max. 2 bar</td>
<td>120</td>
<td>°C</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
</tbody>
</table>

13.4.3 Air humidity

Air humidity

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum air humidity *:</td>
<td>92</td>
<td>% rel. humidity</td>
</tr>
</tbody>
</table>

* non-condensing
13.5 Motor data

Electrical data

<table>
<thead>
<tr>
<th>Identity code specification</th>
<th>Phase, protection</th>
<th>Rated voltage</th>
<th>Mains supply frequency</th>
<th>Rated output</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3 ph, IP 55</td>
<td>220-240 V / 380-420 V</td>
<td>50 Hz</td>
<td>0.09 kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250-280 V / 440-480 V</td>
<td>60 Hz</td>
<td>0.09 kW</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1 ph AC, IP 55</td>
<td>230 V ±5 %</td>
<td>50/60 Hz</td>
<td>0.12 kW</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1 ph AC, IP 55</td>
<td>115 V ±5 %</td>
<td>60 Hz</td>
<td>0.12 kW</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>3 ph, II2GEEEx-eIIT3</td>
<td>220-240 V / 380-420 V</td>
<td>50 Hz</td>
<td>0.12 kW</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>3 ph, II2GEEEx-dIICT4</td>
<td>220-240 V / 380-420 V</td>
<td>50 Hz</td>
<td>0.18 kW</td>
<td>with PTC, speed control range 1:5</td>
</tr>
<tr>
<td>P1</td>
<td>3 ph, II2GEEEx-eIIT3</td>
<td>250-280 V / 440-480 V</td>
<td>60 Hz</td>
<td>0.12 kW</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>3 ph, II2GEEEx-dIICT4</td>
<td>250-280 V / 440-480 V</td>
<td>60 Hz</td>
<td>0.18 kW</td>
<td>with PTC, speed control range 1:5</td>
</tr>
<tr>
<td>R</td>
<td>3 ph, IP 55</td>
<td>230 V /400 V</td>
<td>50 Hz</td>
<td>0.09 kW</td>
<td>with PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz</td>
</tr>
<tr>
<td>V0</td>
<td>1 ph AC, IP 55</td>
<td>230 V ±5 %</td>
<td>50/60 Hz</td>
<td>0.18 kW</td>
<td>Variable speed motor with integrated frequency converter</td>
</tr>
</tbody>
</table>

Motor data sheets, special motors, special motor flanges, external fan, temperature monitoring

- For further information for the motor with identity code specification "S", refer to the "Supplementary information CD for ProMinent pump operating instructions". Motor data sheets can be requested for all other motors.
- For other motors "S", "M" or "N" as identity code specifications: Pay special attention to the operating instructions of the motors.
- Special motors or special motor flanges are possible on request.
- Notes on the speed controlled motor with external fan and temperature monitoring can be found in the "General operating instructions for ProMinent® motor-driven metering pumps and hydraulic accessories"!

13.6 Stroke actuator

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Mains supply frequency</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V ±10 %</td>
<td>50/60 Hz</td>
<td>11.7 W</td>
</tr>
<tr>
<td>115 V ±10 %</td>
<td>60 Hz</td>
<td>11.7 W</td>
</tr>
</tbody>
</table>
13.7 Stroke control drive

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Mains supply frequency</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V ±10 %</td>
<td>50/60 Hz</td>
<td>6.5 W</td>
</tr>
<tr>
<td>115 V ±10 %</td>
<td>60 Hz</td>
<td>6.5 W</td>
</tr>
</tbody>
</table>

13.8 Diaphragm rupture sensor

Install the sensor according to the chapter "Installation, electrical".

a) Contact (Standard for identity code specification "Displacement body": A)

<table>
<thead>
<tr>
<th>at voltage</th>
<th>Maximum current</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 V DC</td>
<td>1 A</td>
</tr>
<tr>
<td>125 V AC</td>
<td>0.6 A</td>
</tr>
<tr>
<td>250 V AC</td>
<td>0.3 A</td>
</tr>
</tbody>
</table>

The diaphragm rupture sensor is an NC.

- For safety reasons we recommend connecting to a protective low voltage, e.g. in accordance with EN 60335-1 (SELV).
- The cable can be connected as required.

a) Namur sensor (for identity code specification "Displacement body": A)

5–25 V DC, in accordance with Namur or DIN 60947-5-6, potential-free design.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage *</td>
<td>8</td>
<td>VDC</td>
</tr>
<tr>
<td>Power consumption - active surface uncovered</td>
<td>> 3</td>
<td>mA</td>
</tr>
<tr>
<td>Power consumption - active surface covered</td>
<td>< 1</td>
<td>mA</td>
</tr>
<tr>
<td>Rated switching distance</td>
<td>1.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

* Ri ~ 1 kΩ
13.9 Stroke sensor "Sigma"

For more information, see "Pacing relay" in the "Relay" chapter.

For 5–25 V DC, in accordance with Namur or DIN 60947-5-6, potential-free design.

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage *</td>
<td>8</td>
<td>VDC</td>
</tr>
<tr>
<td>Power consumption - active surface</td>
<td>> 3</td>
<td>mA</td>
</tr>
<tr>
<td>uncovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption - active surface</td>
<td>< 1</td>
<td>mA</td>
</tr>
<tr>
<td>covered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated switching distance</td>
<td>1.5</td>
<td>mm</td>
</tr>
<tr>
<td>* Ri ~ 1 kΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable colour	Polarity
blue | -
brown | +

13.10 Relay

The electrical data for the relay are contained in the chapter "Installation, electrical".

13.11 Sound pressure level

Sound pressure level $L_{pA} < 70$ dB in accordance with EN ISO 20361:2010-10
at maximum stroke length, maximum stroke rate, maximum back pressure (water)

13.12 Supplementary information for modified versions

(With identity code specification "Version": "M" - "modified")

Technical data

Technical data of pumps in the modified version can deviate from those of the standard pumps. They can be queried by stating the details of the serial number.
During operation with an automatic stroke length adjustment control together with a variable speed motor, the stroke rate must not fall below 30 strokes / min. Otherwise technical problems occur, because the mechanical resistance of the stroke adjustment spindle becomes too high.

<table>
<thead>
<tr>
<th>motor</th>
<th>The motor data sheets for the modified version are valid. They may deviate from the standard motor data sheets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spare parts</td>
<td>With a modified version, it is absolutely necessary to specify the details of the serial number requesting and ordering the spare and replacement parts.</td>
</tr>
</tbody>
</table>
EC Declaration of Conformity

For pumps without explosion protection:

<table>
<thead>
<tr>
<th>Description of the product:</th>
<th>Metering pump, series Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product type:</td>
<td>S1Ba... / S1Ca...</td>
</tr>
<tr>
<td>Serial no.:</td>
<td>refer to nameplate on the device</td>
</tr>
</tbody>
</table>

Pertinent EC Directives:

- EC Machinery Directive (2006/42/EC)
- EC Low Voltage Directive (2006/95/EC)

Applied harmonised standards in particular:

- EN ISO 12100-1, EN ISO 12100-2, EN 809, EN 60335-1, EN 60335-2-41, EN 60529, EN 61000-3-2, EN 61000-6-2

Technical documents have been compiled by:

- Norbert Berger
 - Im Schuhmachergewann 5-11
 - DE-69123 Heidelberg

Date / Manufacturer - Signature:

- 04.01.2010

Details of the signatory:

- Joachim Schall, Head of Research and Development
For pumps with explosion protection:

EC Declaration of Conformity

- **Original -**

EC - Declaration of Conformity

We hereby declare,

ProMinent Dosiertechnik GmbH
Im Schuhmachergewann 5 - 11
D - 69123 Heidelberg

That the following designated product, based on its development and construction, as well as the version marketed by us, complies with the relevant EC safety and health directive. This declaration loses its validity in the event of a modification to the product not agreed with us.

Identification of Product: Diaphragm Metering Pump, Series Sigma 1
Construction "Ex-Proof" according to "ATEX 95"

Product Type: S1BA- - - - - - - - - X Y -
characteristic value "X" = "P" or "L",
and characteristic value "Y" = "1" or "2"
or "X" = "2 or 3" and "Y" = "A"

Series - No.: see nameplate on device

Relevant EC Directives:
EC - Ex- Directive (94/9/EC)

Applied harmonised standards:
Pump without Motor: EN ISO 12100-1/2, EN 809, EN 13463-1/5
Motor Ex "e": EN 50014, EN 50019
Motor Ex "d": EN 60079-0, EN 60079-1, EN 60079-7, EN 61241-0, EN 61241-1
Hub sensor: EN 60079-0, EN 60079-11, EN 60079-26

The assembly of the components does not present any new Ex-relevant hazards.

Ex-identification:
Pump without motor: II 2G c IIC T4 X
Motor (characteristic value "Y"="1"): II 2G Ex e IIC T3
Motor (characteristic value "Y"="2"): II 2G Ex e IIC T4
Diaphragm rupture sensor: II 1G Ex ia IIC T6
Overall system: II 2G c IIC T3 X (for "Y"="1") or II 2G c IIC T4 X (for "Y"="2" or "A")

Technical documents compiled by:
Norbert Berger
Im Schuhmachergewann 5-11
DE-69123 Heidelberg

Date / Manufacturer - Signature:
26.05.2010

Details of the signatory:
Joachim Schall, Head of Development

The EC Declaration of Conformity, the EC type-examination certificates and the operating instructions for the individual components are also enclosed with the pump.
Decontamination declaration

Declaration of Decontamination
(see download: www.prominent.com)

Because of legal regulations and for the safety of our employees and operation equipment, we need the „declaration of decontamination“, with your signature, before your order can be handled.
Please make absolutely sure to include it with the shipping documents, or – even better – attach it to the outside of the packaging.

Please return your products to:

Type of instrument / sensor: ___________________________ Serial number: ___________________________

Process data:
Temperature: ___________ [°C] Pressure: ___________ [bar]

Druck:

Mediun and warnings:
Warnhinweise zum Medium:

<table>
<thead>
<tr>
<th>Medium/ Concentration</th>
<th>Identification CAS No.</th>
<th>flammable</th>
<th>toxic</th>
<th>corrosive</th>
<th>harmful</th>
<th>other*</th>
<th>harmless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process medium</td>
<td>Medium im Prozeß</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium for process-</td>
<td>Medium zur Prozessreinigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Returned part cleaned</td>
<td>Medium zur Endreinigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* explosive; oxidising; dangerous for the environment; biological risk; radioactive
* explosive; brennfähig; umweltgefährlich; biologischerrisk; radioaktiv

Please tick one of the above be applicable, include security sheet and, if necessary, special handling instructions.

Reason for return:

Company data:
Company: ___________________________ Phone number: ___________________________
Contact person: ___________________________ Fax: ___________________________
Street: ___________________________ E-Mail: ___________________________
Address: ___________________________ Your order No.: ___________________________

"We hereby certify that the returned parts have been carefully cleaned. To the best of our knowledge they are free from any residues in dangerous quantities."

Place, date ___________________________ Company stamp and legally binding signature