Operating Instructions
Ultromat® AT/96 and ATF/96 Series V 5.0
Three-compartment Plant for the Preparation of Polyelectrolyte

Please read the operating instructions through completely before commissioning this equipment. Do not discard! Any part which has been subject to misuse is excluded from the warranty!
Printing:
Operating Instructions for Ultromat® AT/96 und ATF/96 Serie V 5.0
Three-compartment Plant for the Preparation of Polyelectrolyte
© ProMinent Dosiertechnik GmbH, 2002

Address:
ProMinent Dosiertechnik GmbH
Im Schuhmachergewann 5-11
69123 Heidelberg
Germany
Tel.: +49 (6221) 842-0
Fax: +49 (6221) 842-419
info@prominent.com
www.prominent.com

Subject to technical alteration.
Table of Contents

General User Guidelines

1 **Transport and Storage of the Plant** .. 7

2 **Plant Information** ... 7
 2.1 Applications .. 7
 2.2 Capacity ... 7
 2.2.1 Ultromat® AT/96 (for powdered polymer batching) .. 7
 2.2.2 Ultromat® ATF/96 (for powder and liquid polymer batching) .. 8
 2.3 Ultromat® AT/96 Dimensions .. 8
 2.4 Ultromat® ATF/96 Dimensions .. 9

3 **Description of Functions** .. 10
 3.1 Plant Construction ... 10
 3.2 Description of Individual Units .. 10
 3.2.1 Three-compartment Tank .. 10
 3.2.2 Inlet water system and wetting equipment .. 11
 3.2.3 Powder Feeder ... 11
 3.2.4 Agitators ... 11
 3.2.5 Control Cabinet ... 11
 3.2.6 Ultromat EA assembly .. 12
 3.2.7 Concentrate Pipework (ATF/96 only) .. 13
 3.3 Plant Function .. 14
 3.4 Operating Methods ... 14
 3.4.1 Preparation Operation .. 14
 3.4.2 Settings Configuration Option ... 14
 3.4.3 Remote Control Option .. 14
 3.5 Ultromat® Options ... 14
 3.5.1 Storage Compartment Agitator (Agitator 3) .. 14
 3.5.2 Remote Control .. 15
 3.5.3 Overflow Safety Cut-out ... 15
 3.5.4 Evaluation of After Dilution Unit .. 15
 3.5.5 Power Socket for Automatic Hopper Loader .. 15
 3.5.6 Empty Signal for Concentrate Supply Drum (Ultromat® ATF only) ... 15
 3.5.7 Liquid Concentrate Dosing Monitoring (Ultromat® ATF only) ... 15
 3.6 Ultromat® Accessories .. 16
 3.6.1 Detachable Hopper; 50 L, 75 L and 100 L .. 16
 3.6.2 Automatic Hopper Loader for Powdered Polymers ... 16
 3.6.3 BIG-BAG Batching Unit ... 16
 3.6.4 Step Ladder .. 16
 3.6.5 After Dilution Unit .. 16
 3.6.6 Lifting lugs ... 16

4 **General Safety Guidelines** .. 17

5 **Assembly and Installation** ... 17
 5.1 Installation of the Plant .. 17
 5.2 Electrical Installation ... 18
 5.2.1 Connecting Mains Supply Cable .. 18
 5.2.2 Opening the Controller (see diagram 4) .. 18
 5.3 Fitting Options .. 18
Table of Contents

6 Controller

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Design and Function</td>
<td>18</td>
</tr>
<tr>
<td>6.1.1 Display and Operation Module</td>
<td>19</td>
</tr>
<tr>
<td>6.1.2 Display Supplement (Displays State)</td>
<td>19</td>
</tr>
<tr>
<td>6.1.3 Operating Elements</td>
<td>19</td>
</tr>
<tr>
<td>6.1.4 Operating State Displays and Plant Operation</td>
<td>20</td>
</tr>
<tr>
<td>6.2 Menu System</td>
<td>20</td>
</tr>
<tr>
<td>6.2.1 Menu Layout</td>
<td>20</td>
</tr>
<tr>
<td>6.3 Operating the Controller - Selecting a Menu Option</td>
<td>21</td>
</tr>
<tr>
<td>6.4 Display Mode</td>
<td>21</td>
</tr>
<tr>
<td>6.4.1 Normal Operation</td>
<td>21</td>
</tr>
<tr>
<td>6.4.2 Interrupting Normal Operation</td>
<td>21</td>
</tr>
<tr>
<td>6.4.3 Identcode Display</td>
<td>21</td>
</tr>
</tbody>
</table>

7 Commissioning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Assembly, Initial Tasks</td>
<td>22</td>
</tr>
<tr>
<td>7.2 Checking Identcode</td>
<td>23</td>
</tr>
<tr>
<td>7.3 Start up Settings</td>
<td>23</td>
</tr>
<tr>
<td>7.3.1 Setting Feed Water Minimum Flow</td>
<td>23</td>
</tr>
<tr>
<td>7.3.2 Setting Feeder Screw Pipe Heater</td>
<td>23</td>
</tr>
<tr>
<td>7.3.3 Setting Prerinising Time and Rinsing Delay Time</td>
<td>23</td>
</tr>
<tr>
<td>7.3.4 Agitators 1 and 2</td>
<td>24</td>
</tr>
<tr>
<td>7.3.5 Agitator 3</td>
<td>24</td>
</tr>
<tr>
<td>7.3.6 Concentrate Pump Minimum Frequency</td>
<td>24</td>
</tr>
<tr>
<td>7.3.7 Change Access Code</td>
<td>24</td>
</tr>
<tr>
<td>7.4 Concentration Settings</td>
<td>25</td>
</tr>
<tr>
<td>7.5 Calibration Settings</td>
<td>25</td>
</tr>
<tr>
<td>7.5.1 Adjust Water Flow</td>
<td>25</td>
</tr>
<tr>
<td>7.5.2 Calibration of Powder Feeder</td>
<td>26</td>
</tr>
<tr>
<td>7.5.3 Calibration of Dosing Pump for Liquid Concentrate (Ultromat® ATF)</td>
<td>26</td>
</tr>
<tr>
<td>7.5.4 Configuring Dosing Monitor for Liquid Concentrate (Ultromat® ATF)</td>
<td>26</td>
</tr>
<tr>
<td>7.6 Service Menu</td>
<td>27</td>
</tr>
<tr>
<td>7.6.1 Flow settings</td>
<td>27</td>
</tr>
<tr>
<td>7.6.2 Testing agitator and powder feeder</td>
<td>27</td>
</tr>
<tr>
<td>7.6.3 Running Ultromat® empty</td>
<td>27</td>
</tr>
<tr>
<td>7.7 Settings of the frequency converter Altivar 11</td>
<td>28</td>
</tr>
<tr>
<td>7.7.1 Function of the controls</td>
<td>28</td>
</tr>
<tr>
<td>7.7.2 Access to the controls</td>
<td>28</td>
</tr>
<tr>
<td>7.7.3 Setting of the parameters</td>
<td>28</td>
</tr>
<tr>
<td>7.7.4 Configuration of Ultromat® ATF ("Speed controller" control option)</td>
<td>30</td>
</tr>
<tr>
<td>7.8 Commissioning</td>
<td>30</td>
</tr>
</tbody>
</table>

8 Operating the Plant

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Normal Operation</td>
<td>30</td>
</tr>
<tr>
<td>8.1.1 Preconditions for Correct Operation</td>
<td>30</td>
</tr>
<tr>
<td>8.1.2 Supplying Dry Feeder with Powder</td>
<td>30</td>
</tr>
<tr>
<td>8.2 Switching On Mains Power and Mains Power Failure Procedure</td>
<td>31</td>
</tr>
<tr>
<td>8.3 Emergency Measures</td>
<td>31</td>
</tr>
<tr>
<td>8.4 Plant Idle</td>
<td>31</td>
</tr>
</tbody>
</table>
9 Operational Errors ... 32

10 Plant Malfunctions/Error Messages - Breakdown Advice ... 32
 10.1 Fault Identification/Malfunctions/Breakdown Advice ... 33
 10.2 Malfunctions in the Water Inlet Pipe ... 34
 10.2.1 Water In-Flow Malfunctions ... 34
 10.2.2 Water Meter Malfunctions ... 34
 10.2.3 Solenoid Malfunctions ... 34
 10.3 Powder-Feed Malfunctions .. 34
 10.4 Malfunctions in the Wetting cone ... 34
 10.5 Malfunctions in the Storage compartment ... 35
 10.5.1 Storage compartment Runs Dry .. 35
 10.5.2 Overflow in Storage compartment ... 35
 10.5.3 Contradictory Liquid level Messages in the Storage compartment 35
 10.6 Agitator Malfunctions .. 35
 10.7 Concentration Errors .. 35
 10.8 Error Messages in Initial Start Up .. 35
 10.9 Hardware Fault Analysis .. 36
 10.10 Dilution Faults ... 36

11 Maintenance ... 36
 11.1 Inspecting the Dry Feeder and the Wetting cone .. 36
 11.2 Cleaning the Filter Insert in the Pressure-Reducing Valve .. 36
 11.3 Opening and Cleaning the Solenoid Valve .. 36
 11.4 Dismantling and Examining the Flow Meter (turboDOS) .. 37
 11.5 Changing the Mains Power Safety Fuse in the Controller ... 37
 11.6 Removing the Inspection Cover on the Three Compartment Tank .. 37
 11.7 Rinsing the Multi-chamber Tank .. 37

12 Appendix .. 38
 12.1 Declaration of Conformity ... 38
 12.2 Assembly Drawing AT 400 ... 39
 12.3 Assembly Drawing AT 1000 .. 40
 12.4 Assembly Drawing AT 2000 .. 41
 12.5 Assembly Drawing AT 4000 .. 42
 12.6 Assembly Drawing AT 8000 .. 43
 12.7 Assembly Drawing ATF 4000 .. 44
 12.8 Assembly Drawing ATF 1000 .. 45
 12.9 Assembly Drawing ATF 2000 .. 46
 12.10 Assembly Drawing ATF 4000 ... 47
 12.11 Assembly Drawing ATF 8000 ... 48
 12.12 Programming Menu Ultromat® AT/96 ... 49
 12.13 Programming Menu Ultromat® ATF/96 .. 50
 12.14 Commissioning Protocol .. 51
General User Guidelines

Please read through the following user guidelines. Familiarity with these points ensures optimum use of the operating instructions.

Key points in the text are indicated as follows:

- Enumerated points / Hints

Working guidelines:

IMPORTANT
Guidelines are intended to make your work easier.

Safety guidelines:

WARNING
Describes a potentially dangerous situation. Could result in loss of life or serious injury if preventative measures are not taken.

NOTICE
Describes a potentially threatening situation. Could result in damage to property if preventative measures are not taken.
1 Transport and Storage of the Plant

The Ultromat® plant may be moved only when it is empty and using the correct lifting gear. During transportation of the tank there should be nothing which might place pressure on the tank walls. Heavy jolts and bumps should be avoided at all costs. When using fork lifts, use long forks which extend to the full width of the tank.

If transportation is carried out by crane, even when lifting lugs are attached to the plant, fix the slings in such a way as to avoid sheering forces at all costs. Sheering forces which act while the tank is under transportation lead to damage of the tank walls and the welded seams.

Ultromat® models 4000 and/or 8000, if fitted with lifting lugs, can be lifted with a tie-bar only. The tie bar must be at least 10 - 20 cm longer than the tank being transported.

For transportation and storage of the plant, the surrounding air temperature should be between -5 °C to +50 °C. The plant should be stored in an area which is dust-free as far as possible, and protected from rain, damp (no condensing water) and direct sunlight.

Direct sunlight leads to colour changes and distortion and/or tears forming in the coating material.

IMPORTANT

The Ultromat® should not be transported in temperatures below -5 °C due to the fact that cold causes brittleness in the plastic coating, which can lead to damage to the welded seams, tank walls and strengthening framework.

2 Plant Information

2.1 Applications

The Ultromat® AT/96 is a fully automatic polyelectrolyte preparation plant. It can be used wherever liquid polyelectrolyte solutions need to be prepared automatically. Its central function, which is to dissolve solids, makes the plant ideally suited to a variety of technical processing applications, e.g. in the water treatment industry, waste water treatment and paper manufacture. Ultromat® ATF/96 can be used with either powdered polyelectrolytes or liquid polymers.

2.2 Capacity

2.2.1 Ultromat® AT/96 (for powdered polymer batching):

The plant is designed for the fully automatic production of polyelectrolyte stock solution. It may be used for nearly all commercial electrolytes in powder form.

Controlled by the Ultromat® program, concentrations may be preprogrammed within a range of 0.05 to 1.0 %. The viscosity of the polymer solution which is produced must not, however, exceed the value of 1500 mPas. The instructions concerning viscosity of differing polymer solutions can be found in the user’s data documents from the individual polymer suppliers.

To fully exploit the batching range, it may be occasionally necessary to adjust the flow rate of the water in-flow. Concentrations above 0.5 % can lead to a decrease in the effectiveness of the batch capacity.

The maturation period of a stock solution is dependant upon the extraction rate and the capacity (volume) of the Ultromat® and lasts approx. 60 minutes for a maximum extraction rate. The plant capacities range from a maximum 400 L of prepared solution per hour for the AT 400, to 8000 L for the AT 8000.
2.2.2 Ultromat® ATF/96 (for powder and liquid polymer batching)

The Ultromat® ATF/96 can be used for the preparation of either powder or liquid polymers. Ultromat® ATF/96 can be transferred from powder- to liquid-preparation mode using the key-operated switch in the door of the control cabinet. This deactivates the dry feeder and activates the concentrate dosing pump. The Ultromat® ATF/96 is also fitted with a dosing tube for the injection of liquid concentrates. This tube can be fitted optionally with a back pressure valve and thermal dosing monitor (only with eccentric screw pumps).

Liquid concentrate dosing pumps are supplied with a choice of the following control options:

<table>
<thead>
<tr>
<th>Control option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed controller</td>
<td>Internal Speed controller varies concentrate pump frequency up to maximum 0.37 kW. The speed controller can be transferred via a contactor from the concentrate pump (eccentric screw pump) to dry feeder and vice-versa. Fitting an external fan will increase the pump setting range. The external fan can be connected at the control cabinet. It is not necessary to monitor temperature of motor coil.</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>Control of gamma and Sigma pumps via 4-20 mA signal</td>
</tr>
</tbody>
</table>

2.3 Ultromat® AT/96 Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>dimensions (mm)</th>
<th>water inlet nominal width</th>
<th>empty/ operational dimension</th>
<th>power connector supply</th>
<th>agitator</th>
<th>dry feeder capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 400</td>
<td>L = 1770</td>
<td>R 1”</td>
<td>190/590 kg</td>
<td>DN 40/ DN 25</td>
<td>1.5 kW</td>
<td>0.18 kW 750 rpm TD 18.20</td>
</tr>
<tr>
<td></td>
<td>B = 915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3 - 29 L/h</td>
</tr>
<tr>
<td></td>
<td>H = 1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 1000</td>
<td>L = 2410</td>
<td>R 1”</td>
<td>400/1400 kg</td>
<td>DN 50/ DN 25</td>
<td>2.6 kW</td>
<td>0.55 kW 750 rpm TD 18.20</td>
</tr>
<tr>
<td></td>
<td>B = 950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3 - 29 L/h</td>
</tr>
<tr>
<td></td>
<td>H = 1605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 2000</td>
<td>L = 3070</td>
<td>R 1”</td>
<td>450/2450 kg</td>
<td>DN 50/ DN 32</td>
<td>3.2 kW</td>
<td>0.75 kW 750 rpm TD 18.20</td>
</tr>
<tr>
<td></td>
<td>B = 1090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3 - 29 L/h</td>
</tr>
<tr>
<td></td>
<td>H = 1765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 4000</td>
<td>L = 3181</td>
<td>R 1½”</td>
<td>600/4600 kg</td>
<td>DN 65/ DN 40</td>
<td>5.0 kW</td>
<td>1.1 kW 750 rpm TD 30.20</td>
</tr>
<tr>
<td></td>
<td>B = 1504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 - 132 L/h</td>
</tr>
<tr>
<td></td>
<td>H = 2268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 8000</td>
<td>L = 4434</td>
<td>R 2”</td>
<td>1200/9200 kg</td>
<td>DN 80/ DN 50</td>
<td>9.5 kW</td>
<td>2.2 kW 750 rpm TD 38.20</td>
</tr>
<tr>
<td></td>
<td>B = 1910</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 - 264 L/h</td>
</tr>
<tr>
<td></td>
<td>H = 2350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 Ultromat® ATF/96 Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions (mm)</th>
<th>Water Inlet</th>
<th>Nominal Diameter</th>
<th>Empty/Operational Weights</th>
<th>Overflow/Extraction Connector</th>
<th>Power Supply</th>
<th>Agitator</th>
<th>Concentrate Dosing Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF 400</td>
<td>L = 1770 R 1”</td>
<td>190/</td>
<td>DN 40/</td>
<td>1.5 kW</td>
<td>0.18 kW</td>
<td>DN 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 915</td>
<td>590 kg</td>
<td>DN 25</td>
<td></td>
<td>750 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 1250</td>
<td></td>
<td></td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF 1000</td>
<td>L = 2410 R 1”</td>
<td>400/</td>
<td>DN 50/</td>
<td>2.6 kW</td>
<td>0.55 kW</td>
<td>DN 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 950</td>
<td>1400 kg</td>
<td>DN 25</td>
<td></td>
<td>750 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 1605</td>
<td></td>
<td></td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF 2000</td>
<td>L = 3070 R 1”</td>
<td>450/</td>
<td>DN 50/</td>
<td>3.2 kW</td>
<td>0.75 kW</td>
<td>DN 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 1090</td>
<td>2450 kg</td>
<td>DN 32</td>
<td></td>
<td>750 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 1765</td>
<td></td>
<td></td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF 4000</td>
<td>L = 3181 R 1½”</td>
<td>600/</td>
<td>DN 65/</td>
<td>5.0 kW</td>
<td>1.1 kW</td>
<td>DN 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 1504</td>
<td>4600 kg</td>
<td>DN 40</td>
<td></td>
<td>750 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 2268</td>
<td></td>
<td></td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF 8000</td>
<td>L = 4434 R 2”</td>
<td>1200/</td>
<td>DN 80/</td>
<td>9.5 kW</td>
<td>2.2 kW</td>
<td>DN 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 1910</td>
<td>9200 kg</td>
<td>DN 50</td>
<td></td>
<td>750 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 2350</td>
<td></td>
<td></td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 = 1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.B. power supply is used for device incorporating three agitators.

Diagram 1: Ultromat® Dimensions
3 Description of Functions

3.1 Plant Construction

All plant parts for powder pre-storage, powder feed, wetting, dissolving and maturing of polyelectrolytes are assembled together to form a compact unit. The Ultromat® plant consists of the closed three compartment tank (a), the water pipework (b) with wetting cone (c), the dry feeder, (d) including a 20 l feed hopper, the agitators (e) and the control cabinet (f). Tanks, wetting cones and dry feeders are made from PP. There is a choice of PVC or PP available for the water pipework, fitted with brass mechanismus.

Diagram 2: Ultromat® AT/96

The seals are made of EPDM. For the treatment of non-alkaline polyelectrolytes, unsaturated hydrocarbons, which attack these seals, the plant can be fitted with Viton® seals. The agitator shafts and agitator blades, and the dry feeder conveyor unit are made entirely from stainless steel.

3.2 Description of Individual Units

3.2.1 Three-compartment Tank

The closed PP tank unit with agitator tie bars, brackets for the dry feeder and control cabinet, along with overflow, emptying and extracting connectors, is divided into three separate chambers. Preparation, maturing and storage compartments guarantee a sufficient time lapse and maturing period for the stock solution. The division of the tank furthermore prevents mature solution mixing with freshly batched solution and allows continual extraction.

The liquid level in the storage compartment is monitored by a liquid level sensor. In addition to the “maximum” and “minimum” contacts which start and/or finish the automatic batching process, the unit is also fitted with an “empty” contact, which protects the system from running when empty, and a further sensor to protect against over-fill (over-fill safety cut-out optional). All inspection openings in the tank are protected by covers which are firmly screwed in position.
3.2.2 Inlet water system and wetting equipment

The water pipework supplies the plant with the water required to dissolve the dosed powder. The pressure control valve, which incorporates a strainer, limits and maintains the correct operating pressure. A solenoid valve automatically opens and closes the water inlet. The turbine counter (ProMinent® turboDOS) continuously relays the flow volume at any time to the controller. The wetting cone with mixing appliance, overflow, and level sensors to monitor overflow situations, maintains the intensive wetting of Polyelectrolyte powder with water. A manually operated stop valve also allows the water supply to be cut off to allow maintenance work to be carried out.

Diagram 3: Water Apparatur with wetting cone

3.2.3 Powder Feeder

Further information about the construction and operation of the feeder may be found in the appendix of the separate Operating Instructions Manual. Feeder screw pipe back-stop flap, feeder screw pipe heater and the minimum fill level sensor for the dry feeder are standard Ultromat® treatment plant components. The frequency to the feeder is changed to give quantity-proportional dosing of polyelectrolyte powder to water.

A stable protective screen made from PP protects and surrounds the feeder and the mixing equipment.

3.2.4 Agitators

The Ultromat® is fitted with two electric agitators. A third agitator can be optionally supplied for the storage compartment. The agitators ensure adequate circulation of the solution in the storage compartment. A single controller controls the agitators in both the preparation and maturing compartments.

WARNING

The agitators will continue to run for the pre-set time span even if the plant has been turned on/off using the start/stop key. Even if a malfunction has occurred, with exception of malfunctions of the agitators themselves the agitators will continue to run intermittently.

3.2.5 Control Cabinet

All the electrical control and command equipment required to operate the plant, in particular the controller for the Ultromat® and the frequency inverter which controls the dry feeder, are located inside the control cabinet, next to the mains supply circuit and the safety fuses. The Ultromat® ATF control cabinet is also fitted with a key-operated switch for selecting powder or liquid preparation modes.
The Ultromat-EA assembly is a compact function unit assembled on a circuit board. It performs the following functions:

- Power supply unit 24 VDC, 500 mA
- Relay for coupling the output signal (250 VAC, 3A)
- Optical isolator for disconnecting the input signal
- Liquid level relay for evaluation of the conductive liquid level electrodes

Output relay:

The switch status of every relay is displayed via a LED. The LED is lit if the relay contact is made.

<table>
<thead>
<tr>
<th>Relay</th>
<th>LED</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>H6</td>
<td>Alarm</td>
</tr>
<tr>
<td>K2</td>
<td>H7</td>
<td>Audio signal</td>
</tr>
<tr>
<td>K3</td>
<td>H8</td>
<td>Not used</td>
</tr>
<tr>
<td>K4</td>
<td>H9</td>
<td>Agitator 1 and 2</td>
</tr>
<tr>
<td>K5</td>
<td>H10</td>
<td>Agitator 3</td>
</tr>
<tr>
<td>K6</td>
<td>H11</td>
<td>Powder/liquid switch over</td>
</tr>
<tr>
<td>K7</td>
<td>H20</td>
<td>Heater</td>
</tr>
<tr>
<td>K8</td>
<td>H21</td>
<td>Closing cap TGD</td>
</tr>
<tr>
<td>K9</td>
<td>H22</td>
<td>Solenoid valve, water</td>
</tr>
<tr>
<td>K10</td>
<td>H23</td>
<td>Drainage (run dry)</td>
</tr>
<tr>
<td>K11</td>
<td>H24</td>
<td>Operation</td>
</tr>
<tr>
<td>K12</td>
<td>H25</td>
<td>Alarm (parallel K1)</td>
</tr>
</tbody>
</table>

Setting the sensitivity of the liquid level relay:

The sensitivity of the liquid level relay can be adjusted with the potentiometers P1 and P2. If the conductivity of the water for dilution falls, the sensitivity of the liquid level relay must be increased. To do this, turn the potentiometers P1 and P2 to the right with a screwdriver. Potentiometer P1 is responsible for the overflow level (LSAH) and potentiometer P2 for the minimum and maximum (LSALL, LSL and LSH) run dry levels. The potentiometer has a 15-turn setting range.
The liquid level switching status is displayed via LEDs.

LED/liquid level

<table>
<thead>
<tr>
<th>LED/liquid level</th>
<th>Liquid level undershot</th>
<th>Liquid level exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 (LSAHH)</td>
<td>LED on</td>
<td>LED off</td>
</tr>
<tr>
<td>H 12 (LSH)</td>
<td>LED off</td>
<td>LED on</td>
</tr>
<tr>
<td>H 13 (LSL)</td>
<td>LED off</td>
<td>LED on</td>
</tr>
<tr>
<td>H 15 (LSALL)</td>
<td>LED off</td>
<td>LED on</td>
</tr>
</tbody>
</table>

LED for displaying signal status:

The LEDs indicate the internal signal status of the Ultromat-EA assembly.

The meanings are given in the table below:

<table>
<thead>
<tr>
<th>LED</th>
<th>Label</th>
<th>LED lit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>FLK ok</td>
<td>Liquid concentrate pump OK</td>
</tr>
<tr>
<td>H2</td>
<td>RW ok</td>
<td>Stirrer assemblies OK</td>
</tr>
<tr>
<td>H26</td>
<td>Powder > min</td>
<td>Power equipment present</td>
</tr>
<tr>
<td>H28</td>
<td>Flow ok</td>
<td>Fluid concentrate flow OK</td>
</tr>
<tr>
<td>H29</td>
<td>Dilution on</td>
<td>Post dilution switched on</td>
</tr>
<tr>
<td>H30</td>
<td>Post dilution ok</td>
<td>Water flow post dilution unit OK</td>
</tr>
<tr>
<td>H31</td>
<td>FLK > MIN</td>
<td>Liquid concentrate supply present</td>
</tr>
<tr>
<td>H32</td>
<td>Remote control on</td>
<td>External switch actuated</td>
</tr>
<tr>
<td>H5</td>
<td>Liquid level < LSAHH</td>
<td>No overfilling</td>
</tr>
<tr>
<td>H12</td>
<td>Liquid level > LSH</td>
<td>Liquid level exceeded</td>
</tr>
<tr>
<td>H13</td>
<td>Liquid level > LSL</td>
<td>Liquid level exceeded</td>
</tr>
<tr>
<td>H15</td>
<td>Liquid level > LSALL</td>
<td>Liquid level exceeded</td>
</tr>
<tr>
<td>H19</td>
<td>Frequency converter</td>
<td>Frequency converter OK</td>
</tr>
</tbody>
</table>

Spare parts for the ULSA signal splitter:

<table>
<thead>
<tr>
<th>Description</th>
<th>Order no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 Fuse, 160 mA, T, 5x20</td>
<td>712048</td>
</tr>
<tr>
<td>F2 Fuse, 0.63 A, T, 5x20</td>
<td>712030</td>
</tr>
<tr>
<td>K1-K12 Relay, 250 VAC, 3 A</td>
<td>711340</td>
</tr>
<tr>
<td>2A3 Ultromat-EA assembly (ULSA signal splitter el. assembly)</td>
<td>731049</td>
</tr>
</tbody>
</table>

3.2.7 Concentrate Pipework (ATF/96 only)

The Ultromat® ATF is fitted with the following pipework for delivery of liquid concentrates to the batching compartment:

<table>
<thead>
<tr>
<th>Type</th>
<th>Large tubes</th>
<th>Hose nozzle</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF 400</td>
<td>DN 15</td>
<td>DN 15</td>
<td>flow monitor non-return valve</td>
</tr>
<tr>
<td>ATF 1000</td>
<td>DN 15</td>
<td>DN 15</td>
<td>flow monitor non-return valve</td>
</tr>
<tr>
<td>ATF 2000</td>
<td>DN 15</td>
<td>DN 15</td>
<td>flow monitor non-return valve</td>
</tr>
<tr>
<td>ATF 4000</td>
<td>DN 20</td>
<td>DN 20</td>
<td>flow monitor non-return valve</td>
</tr>
<tr>
<td>ATF 8000</td>
<td>DN 20</td>
<td>DN 20</td>
<td>flow monitor non-return valve</td>
</tr>
</tbody>
</table>
3.3 Plant Function

The in-flow of the water is automatically turned on or off according to the operating state, by a solenoid valve. A turbine counter continuously tracks and monitors the flow of water through the plant. The dry feeder conveys the polyelectrolyte powder in proportion to the flow of water. The powder falls into the wetting cone where it is wetted evenly by a partial flow of water. This ensures that the dosing powder is prevented from forming into lumps. The main flow of water is administered by means of a mixing plant and creates light pressure at the hopper outlet. Once there, an agitator completes the dissolving process to produce a solution. From the preparation chamber the solution flows past a weir into the maturing chamber and finally reaches the storage compartment after it has spent sufficient time maturing.

The solution in the chamber is ready to use and can then be extracted. The division of the tank prevents, to a great extent, the matured solution from mixing with the freshly batched solution.

In order to prevent powder deposits from the wetting cone from entering the tank, even at the start of the batching process, the activation of the dry feeder is controlled by a timer, rather than by a solenoid valve, i.e. before the dry feeder starts to run, water flows in for a few seconds. At the end of the batching process the opposite procedure takes place. When the maximum level is reached in the storage compartment, the dry feeder is immediately switched off, but the water continues to flow through for a few seconds more.

A breaker wheel ensures continuous extraction of the dosing powder which is located above the feeder screw. In addition, a feeder screw pipe heater removes any moisture from the pipe, and so prevents dosing powder from blocking the pipe.

3.4 Operating Methods

3.4.1 Preparation Operation

Once the minimum liquid-level in the storage compartment is reached, the Ultromat® starts the batching process. The solenoid valve opens, and after the pre-rinse period the dry feeder commences feeding powder. When the maximum liquid-level is reached, the controller switches off the dry feeder and then closes the solenoid valve after the post-rinsing period.

The Ultromat® switches to “batching” mode.

3.4.2 Settings Configuration Option

All the necessary configurations required to commission the machine are entered when the machine is in settings mode. In this mode, the controller deactivates any functions which might interfere with settings. When calibrating the dry feeder, a process which involves dismantling the wetting cone, the water supply solenoid valve remains closed. Feed can be activated and stopped independently of water flow. The dry feeder remains switched off while water flow rate is configured.

3.4.3 Remote Control Option

The plant can be activated or stopped from a remote centre by selecting the “remote control” option. The batching process is still carried out fully automatically, when plant is activated via remote control. The configuration and display of the operating parameters are carried out on site.

3.5 Ultromat® Options

There is a range of options available for the Ultromat® to improve plant efficiency.

3.5.1 Storage Compartment Agitator (Agitator 3)

The Ultromat® AT is supplied with two electric agitators. A third agitator for the batching chamber can be supplied as an option.
3.5.2 Remote Control
Operating or stop states can be controlled via remote control. Ultromat® can be activated or stopped using an external switch.
Operating signals are transmitted via a dry contact. The signals are as follows:

contact closed:
- Plant is operational
- No malfunctions

contact open:
- Plant was stopped on site or by remote
- Malfunction

3.5.3 Overflow Safety Cut-out
The overflow safety cut-out signals an overflow in the Ultromat® storage compartment and triggers an alarm.

3.5.4 Evaluation of After Dilution Unit
The after dilution unit is used to further dilute the batched polymer solutions. The polymer solution is pumped out of the Ultromat® storage compartment into the after dilution unit. A solenoid valve introduces dilution water into the unit. A flow meter, connected downstream, with a low-flow contact, monitors the dilution water.
The “dilution unit values” option checks the rotameter minimum-liquid-levels contact. If the min. contact indicates lack of water, Ultromat® operation is interrupted, and the discharge pump (polymer solution) is paused. The Ultromat® is fitted with a dry contact for control of the discharge pump (discharge pump release). This contact is closed when liquid-levels in the storage compartment reach “minimum liquid-level”. It opens when liquid-levels fall below the “minimum liquid level” once more. The discharge pump is normally controlled via an external switch (motor start combination). As the discharge pump may be switched on and off externally, there is an additional input on the Ultromat controller to detect signals from the starter motor (dry auxiliary contact). The min. contact on the rotameter is only detected when the discharge pump is running, closing the dry auxiliary contact on the starter motor. If the discharge pump is not running, the dry contact is not closed and there is no detection of min. contact on the flow meter.

3.5.5 Power Socket for Automatic Hopper Loader
For connection of a conveyor unit the Ultromat® can be fitted with a power socket, including an overload safety cut-out. This is fitted to the side of the control cabinet.

3.5.6 Empty Signal for Concentrate Supply Drum (Ultromat® ATF only)
The “concentrate drum empty” signal-option contains a sensor which can be located on the outside of plastic hoppers. If the drum is metallic, this kind of sensor cannot be used. In this case, a floating sensor may be introduced into the drum from above.

3.5.7 Liquid Concentrate Dosing Monitoring (Ultromat® ATF only)
The Ultromat® ATF/96 can be used either with liquid or powdered polymers. In “liquid” preparation mode a pump injects the concentrate into the Ultromat® batching compartment. Dosing monitoring can be carried out with eccentric screw pumps only.
The dosing monitor consists of a flow adapter and a thermal flow sensor. To set flow monitor configurations select “set dosing monitor” settings menu.
3.6 **Ultromat® Accessories**

The following accessories are available for the Ultromat® AT/96 and ATF/96.

3.6.1 **Detachable Hopper; 50 L, 75 L and 100 L**

To enable operators to increase supply of dosing powder, detachable hoppers with additional capacities of 50, 75 and 100 L are available.

3.6.2 **Automatic Hopper Loader for Powdered Polymers**

We supply a pneumatic conveyor unit for automatic filling of powder feeder hopper. The conveyor unit can be connected straight to the powder feeder using an adapter. A 50 L detachable hopper with connector adapter is recommended for the short periods when the conveyor unit is being serviced.

3.6.3 **BIG-BAG Batching Unit**

A range of designs is available to suit different requirements. The special BIG-BAG feed station is designed for use with the small conveyor unit, and a special cover attachment is available for direct feed of extension hoppers.

3.6.4 **Step Ladder**

If the dry feeder is not equipped with automatic feed operation, a mobile step ladder is recommended in order to facilitate manual filling of the dry feeder. Access is gained from the front of the feeder.

3.6.5 **Dilution Unit**

As the Ultromat® plants can operate with highly-concentrated solutions, in many cases it is appropriate to treat highly concentrated stock solutions by a dilution process. Polyelectrolyte solutions with a higher concentration last longer, and so a dilution station connected downstream increases the dosing and extraction capacity of the plant. Care must be taken, however, that the viscosity of the stock solution does not exceed a value of 1500 mPa. The dilution stations, which are supplied as complete units, have been designed specifically to fit the dimensions of the equipment, and for a dilution-to-volume ratio of 1 : 5. A choice of models is available.

3.6.6 **Lifting lugs**

4 lifting lugs facilitate securing and manoeuvring of plant.
4 General Safety Guidelines

WARNING

The plant delivered is constructed to generally recognised technical standards and is safe to operate as long as specified safety guidelines are observed. When working with Ultromat® plant, however, there are certain safety aspects which you must be aware of. These are given below.

- Throughout all installation and maintenance work, the plant must be disconnected from the power supply. Measures must be taken to ensure that no unauthorised personnel can interfere with the plant during this time. This applies especially for work on electrical circuitry. The control cabinet must be kept locked at all times. Danger of Death!
- All work on the Ultromat® plant must be carried out by trained specialists only.
- For safety reasons the operation of the plant may only be assigned to persons who are familiar with its function and who have been instructed correspondingly.
- The tank cover, which is screwed on and which covers the inspection openings, may only be removed for maintenance purposes. On no account remove the cover and reach inside the tank chambers while the plant is switched on. The agitators may start to run unexpectedly. Danger of Injury!
- Each time plant is connected to mains power, or when power is restored after a mains power failure the agitators will automatically restart.
- Spilt polyelectrolyte powder or, occasionally polyelectrolyte solution spillages, are to be removed immediately from the surrounding area - increased danger from slippery surfaces!
- The warning notices attached to the plant must be observed.

WARNING

Individual re-fitting and alterations to the plant are not permitted and the manufacturers will not be held responsible for any damage resulting from such actions. Equally, the effective running of the plant when using non-original parts and accessories cannot be guaranteed. The relevant accident prevention regulations and other generally recognised technical safety regulations must be observed.

5 Assembly and Installation

The plant is completely assembled by the manufacturer and undergoes function-testing prior to delivery. The cabling between the control cabinet and the electrical units is connected and ready for operation.

5.1 Installation of the Plant

For the plant installation a fixed (concrete) flat floor area must be available, which will accommodate the dimensions and the operating weight of the plant. Furthermore, care must be taken to ensure that the plant is easily accessible at all times for operating, maintenance and filling with powder. The permissible surrounding temperature ranges from 5 °C to 40 °C. The plant must not be placed in direct sunlight. When connecting with water supply, overflow and drainage pipes make sure dimensions are correct. Overflow and drainage pipes should be fitted with gradients and must be able to operate without back-pressure. The water must be of potable quality. It must be free from mechanical impurities and suspended particles. The incoming water pressure must not be less than 3.5 bar, and not more than 6 bar.
5.2 Electrical Installation

The electrical installation must be carried out by a qualified electrician.

WARNING

The plant must be disconnected from power throughout all installation and maintenance work. Measures must be taken to ensure that no unauthorised personnel can switch on the plant during this time.

5.2.1 Connecting Mains Supply Cable

Connecting the mains supply cable must be carried out exactly in accordance with the circuit diagram (in the control cabinet pocket). The mains cable is passed through a corresponding opening in the control cabinet and connected correctly to the terminal block provided.

When connecting the electrical unit always pay attention that terminals are correctly arranged and that the direction of rotation of the motors (agitators, dry feeder) is correct.

5.2.2 Opening the Controller

WARNING

Before opening the controller, ensure that the plant is not connected to the power supply.

- To open the plastic housing, first of all remove the four countersunk screws in the corners of the cover. The upper section is attached to the lower section by additional snap hooks.
- The snap hooks can be released by exerting pressure downwards onto the upper edge of the cover using the index fingers, and simultaneously pulling forwards a little. Then the whole upper section can be drawn forwards.
- Warning! Upper and lower sections must be separated carefully as they are connected to each other by a short ribbon cable!
- Now the upper section can be placed in the 80 mm high insert using the two guide-rails. In this "parked state" all connector terminals and safety fuses are freely accessible.

5.3 Fitting Options

Some options require reconfiguration of the controller and can therefore only be fitted by our service personnel. Refitting procedures must be done correctly and should be carried out by our experts, in order to ensure that effective plant operation is maintained.

6 Controller

6.1 Design and Function

The Ultromat® controller is housed in a rugged self-contained plastic housing (for installation into electrical control panel, protection system IP 54). It combines the relevant microprocessor controller and its terminal board with the necessary connector terminals, the mains connector and the safety fuses along with all the insertion cards for inputs and outputs.

All information necessary for operating the plant, such as error messages, warnings and values, along with the entire menu system, is displayed according to precedence on a two row LED display.

Malfunctions due to power failures and electrical overload are prevented by a number of safety measures. All stored parameter and configuration data is protected from breaks in the power supply.
6.1.1 Display and Operation Module

Diagram 5: Control Panel, Ultromat® Controller

6.1.2 Display Supplement (Displays State)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Green LED displayed plant in operating state, LED off plant in stopped state</td>
</tr>
<tr>
<td>L2</td>
<td>Red LED displayed malfunction (flashing light), warning (continuous light)</td>
</tr>
<tr>
<td>L3</td>
<td>Green LED displayed controlling feeder screw pipe</td>
</tr>
<tr>
<td>L4</td>
<td>Green LED displayed controlling dosing (dry feeders for AT design and/or concentrate pump for ATF option)</td>
</tr>
<tr>
<td>L5</td>
<td>Green LED displayed controlling water in-flow, red LED displayed flow below set minimum flow</td>
</tr>
<tr>
<td>L6</td>
<td>Green LED displayed controlling discharge pump (stock solution)</td>
</tr>
<tr>
<td>L7</td>
<td>Green LED displayed controlling agitators, chambers 1+2</td>
</tr>
<tr>
<td>L8</td>
<td>Green LED displayed controlling agitator, chamber 3 (option)</td>
</tr>
<tr>
<td>L9</td>
<td>Red LED displayed powder low in dry feeder</td>
</tr>
<tr>
<td>L10</td>
<td>-</td>
</tr>
<tr>
<td>L11</td>
<td>Green LED displayed functioning only in calibration mode and in test modes</td>
</tr>
</tbody>
</table>

LCD display 2 lines, max. 16 characters each

6.1.3 Operating Elements

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>start/stop key</td>
<td>switch Ultromat® into operating or stopped states</td>
</tr>
<tr>
<td>confirm key</td>
<td>confirms an alarm warning</td>
</tr>
<tr>
<td>test key</td>
<td>start/stop button for calibrating dry product metering hopper, liquid concentrate pump, water feed setting and monitoring facility, test facilities</td>
</tr>
<tr>
<td>enter key</td>
<td>saves a value, jumps to next menu point</td>
</tr>
<tr>
<td>change key</td>
<td>change in the menu</td>
</tr>
<tr>
<td>down key</td>
<td>alters numerical value</td>
</tr>
<tr>
<td>back key</td>
<td>goes back in menu</td>
</tr>
<tr>
<td>up key</td>
<td>alters numerical value</td>
</tr>
<tr>
<td>siren key</td>
<td>separate key in door of control cabinet to cancel alarm (does not confirm alarm!)</td>
</tr>
</tbody>
</table>
6.1.4 Operating State Displays and Plant Operation

- The Ultromat® is switched on and off using the main switch located on the side of the control cabinet.

- Once switched on, the plant may be in the operating state (L1: green LED on) or in stopped state (L1: red LED on). To stop and start the operating processes use the STOP/START key.

- A dry remote contact can be used to switch the Ultromat® into the stop state (only for models fitted with “remote control” option). When operating process is stopped by remote control, “Remote control, PAUSE” appears on the LCD display.

- The test key is used during the calibration procedure, to start or stop an action. Whenever the test key should, or may be pressed during calibration, the LED (L11) will flash. Triggering an action using the test key causes a green LED (L11) to light up, and it remains on continuously until the action ceases.

- The red “Alarm” indicator (L2) is located next to the “Confirm” key. During normal operation it is off. If a malfunction occurs, however, it flashes until the malfunction is corrected and the error message is confirmed. Acknowledging the error removes the error message and turns off LED. If there is more than one malfunction present, all texts will be displayed in turn, for approximately two seconds each.

- The alarm siren is deactivated using the separate “Siren off” key in the front door of the control cabinet. This does not deactivate the current alarm.

- Powder and liquid operating parameters are stored separately in the Ultromat® ATF. Change from one operating mode to the other by selecting “powder” or “liquid” using the keyoperated switch in the door of the control cabinet. Prior to this, disconnect Ultromat® from the power supply. If not, a warning “switch off first” will appear once the selected operational mode is activated. The power supply must then be switched off for approx. 10 sec. After reconnection the controller returns the Ultromat® to the selected operating mode.

6.2 Menu System

6.2.1 Menu Layout

The menu is divided into display level and settings level. In the display level, the operating state of the plant alarms is displayed. In the settings level, the parameters for the control of the plant can be altered, and calibration carried out (see also section 12.7 “Programming Menu”).

If desired, the controller automatically changes the settings menu back to the display menu after 10 minutes.

Diagram 6: Menu Structure
6.3 Operating the Controller - Selecting a Menu Option

- **Enter key**
 To confirm and/or save a displayed value or setting

- **Change key**
 To change displays within a menu level

- **Back key**
 Goes back to the previous level, while in the operating menu.
 The steps appear in the order given in the previous diagram.

Press Enter key to change from the display menu to the settings menu. Press Enter again, and then enter access code (factory setting 1000). Then use “Change” key to toggle between “Settings Start Up”, “Settings Calibration”, “Settings Concentration” and “Settings Service”. All the menus which follow may be selected by using the Enter key.

The entry of a value or parameter is carried out using the arrow keys “Decrease Value” and “Increase Value”. Generally the last value that was set is displayed. A new value can be entered over this one. By pressing one of the arrow keys continuously, it will change at an ever increasing rate. By continually entering and confirming, you can travel through the menus.

With the help of the Back key you can revert any time to the previous menu level.

6.4 Display Mode

6.4.1 Normal Operation

The following messages appear in the controller display during batching operation:

- **making-up stock**
 - feed = xxx L/h
- **conc. = x.x %**
 - feed = xxx L/h

Once maximum liquid-level in the storage compartment is reached, the following messages appear on the controller display:

- **stock full**
 - discharge stock
- **conc. = x.x %**
 - discharge stock

6.4.2 Interrupting Normal Operation

Using the Start/Stop key will stop and/or start normal operation. In the stop state the following message will appear on the display:

- **stop**
 - feed = 0 L/h

If the stop signal is a remote-control input, then the following message appears on the display:

- **remote PAUSE**

6.4.3 Identcode Display

Press the Change key to display the Identcode “ULSaTxxxxxxxxx” (as shown in the second row of the controller software version (e.g. :02/4.1) and the operating mode, e.g. “Fluid” (F) or Powder (T).

In case of claims and customer service requirements for operational malfunctions these codes must be given to ProMinent Dosierotechnik GmbH.
7 Commissioning

7.1 Assembly, Initial Tasks

During assembly it is absolutely essential that the handling and positioning instructions given in sections 1 and 5 are followed correctly. Make-up water, extraction and overflow pipes must be connected up and checked to ensure they are water tight and in working order.

It is additionally necessary to connect the liquid concentrate supply pipe for Ultromat® model ATF.

Before starting up for the first time, mechanical and electrical connections must be checked thoroughly to ensure that they are correctly connected up (e.g. motor rotation direction, power supply etc.).

It must be ensured that the voltage, frequency and current going into the control cabinet comply with the instructions given on the nameplate (on the right-hand side of the control cabinet).

Powder should be available in ready quantities and meet the required quality standards.

After switching on the main switch, the LCD displays the message “Stop feed = 0 L/h”. If a different message appears, use the Start/Stop key until the Stop message appears. When using remote control option you may see “Remote PAUSE” on the display. In this case the plant must be released from central switching station control.

7.2 Checking Identcode

Use the change-key in display mode to change to the Identcode display. Press the change key again to return to normal operating display.

Diagramm 7: Identcode
7.3 Start up Settings

Plant is supplied with the following default settings, which are accessed from the “settings start up” menu:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default values</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>D</td>
<td>D, E, F, P, C, N, H</td>
</tr>
<tr>
<td>Feed water minimum flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 400:</td>
<td>500 l/h</td>
<td></td>
</tr>
<tr>
<td>AT 1000:</td>
<td>1200 l/h</td>
<td></td>
</tr>
<tr>
<td>AT 2000:</td>
<td>2400 l/h</td>
<td>0 - 12,000 l/h</td>
</tr>
<tr>
<td>AT 4000:</td>
<td>5000 l/h</td>
<td></td>
</tr>
<tr>
<td>AT 8000:</td>
<td>10,000 l/h</td>
<td></td>
</tr>
<tr>
<td>Heating on-time</td>
<td>5 sec.</td>
<td>1 - 10 sec.</td>
</tr>
<tr>
<td>Heating off-time</td>
<td>35 sec.</td>
<td>30 - 100 sec.</td>
</tr>
<tr>
<td>Prerinising time</td>
<td>7 sec.</td>
<td>0 - 30 sec.</td>
</tr>
<tr>
<td>Rinsing delay</td>
<td>5 min.</td>
<td>0 - 30 min.</td>
</tr>
<tr>
<td>Agitator 1+2 on-time</td>
<td>15 min.</td>
<td>5 - 50 min.</td>
</tr>
<tr>
<td>Agitator 1+2 off-time</td>
<td>15 min.</td>
<td>5 - 50 min.</td>
</tr>
<tr>
<td>Agitator 3 on-time</td>
<td>5 min.</td>
<td>0 - 20 min.</td>
</tr>
<tr>
<td>Agitator 3 off-time</td>
<td>10 min.</td>
<td>5 - 50 min.</td>
</tr>
<tr>
<td>Concentrate pump min. frequency</td>
<td>25 Hz</td>
<td>0 - 50 Hz</td>
</tr>
<tr>
<td>Change access code</td>
<td>1000</td>
<td>1000 - 9999</td>
</tr>
</tbody>
</table>

Values are adapted to process requirements during commissioning.

7.3.1 Setting Feed Water Minimum Flow

If water volume falls due to pressure drop in the water supply, the water level in the wetting cone falls. The water volume must be above 80 % of the set water in-flow quantity, to ensure there is sufficient water entering the wetting cone. Too little water may cause dosed powder to clog the wetting cone and interrupt the batching process.

Select “minimum flow” using Enter key and use up/down keys to raise/lower the value.

7.3.2 Setting Feeder Screw Pipe Heater

Select “Heating on-time?” by pressing Enter key again. Click Enter key repeatedly until the actual on time is displayed. Use up/down keys to increase/reduce time period.

Confirm with Enter key.

After/set off-time in the same way.

IMPORTANT

On/off times should be selected so that the feeder screw pipe temperature does not exceed hand-heat of 40 °C. Higher temperatures can lead to caking of powder which can cause irreparable damage to feeder screw.

7.3.3 Setting Prerinising Time and Rinsing Delay Time

To prevent dosing powder adhering to the inside of the wetting cone, prerinising and delay periods can be programmed into the batching water flow. This ensures sufficient rinsing at either end of the process.

After the solenoid valve opens, water flows for a few seconds until the wetting cone has been rinsed sufficiently. After the prerinising period is complete the flow rate should have levelled out and the inside surface of the wetting cone should be completely wet.

Once the maximum level in the storage compartment has been reached, the dry feeder is switched off. The solenoid valve is closed once the delay period has elapsed. The delay period should be long enough to ensure sufficient rinsing of wetting cone.
7.3.4 Agitators 1 and 2
The agitators are automatically re-activated each time a new batching process begins. After the maximum liquid-level has been reached in the third chamber the two agitators continue to run for a pre-set period in pulse/pause mode.
Select menus: “Agitator 1+2 on-time” and “Agitator 1+2 off-time”. Click on Enter and then use Up/Down keys to alter values. Press Enter again to relay the new settings to the controller.

7.3.5 Agitator 3
The third agitator starts automatically once each batching process has commenced and runs in pulse/pause mode. The choice of appropriate on-off intervals results in effective mixing without damaging the matured macro-molecules.

7.3.6 Concentrate Pump Minimum Frequency
The “Concentrate pump min. frequency” parameter is only applicable for models, where the concentrate dosing pump is controlled via the speed controller. During batching, frequency must not fall below the speed controller minimum frequency.
At slow motor speeds the cooling effect of the fan on the motor coil is greatly reduced. This can cause irreparable damage to the motor. Set the minimum permissible motor frequency when pumps are not fan-cooled.
Where fans are fitted, the “Min. frequency” can be set to approx. 0 Hz. This greatly increases the pump frequency-range.

7.3.7 Change Access Code
Select the final settings-menu: “Change access code” to alter the four-figure default access code. Keep new code in a safe place.

Diagram 8
7.4 Concentration Settings

The Ultromat® can operate with liquid concentrates of 0.05 % to 1.0 %, as long as polymer solution viscosity does not exceed 1500 mPas.

To set concentrations of less than 0.1% and greater than 0.5 % the required concentration must be achieved by correctly configuring the batching water flow. If plant operates at concentrations of less than 0.1 % and greater than 0.5 %, plant capacity is reduced.

Select sub-menu “Settings concentration” using Enter key. “Concentration” appears on the display. Select the required concentration using the up/down keys.

7.5 Calibration Settings

The calibration menu appears only, when Ultromat® is stopped using the Stop key.

Select from the following configurations:

<table>
<thead>
<tr>
<th>Calibration settings applicable</th>
<th>Models where applicable</th>
<th>Operations where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set batching water in-flow</td>
<td>AT and ATF</td>
<td>Powder and liquid</td>
</tr>
<tr>
<td>Calibrate dry feeder</td>
<td>AT and ATF</td>
<td>Powder</td>
</tr>
<tr>
<td>Calibrate concentrate pump</td>
<td>ATF</td>
<td>Liquid</td>
</tr>
<tr>
<td>Set dosing monitor</td>
<td>ATF</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

7.5.1 Adjust Water Flow

The flow of feed water should be adjusted as follows:

<table>
<thead>
<tr>
<th>Ultromat®</th>
<th>Water flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 400, ATF 400</td>
<td>1500 l/h</td>
</tr>
<tr>
<td>AT 1000, ATF 1000</td>
<td>1500 l/h</td>
</tr>
<tr>
<td>AT 2000, ATF 2000</td>
<td>3000 l/h</td>
</tr>
<tr>
<td>AT 4000, ATF 4000</td>
<td>6000 l/h</td>
</tr>
<tr>
<td>AT 8000, ATF 8000</td>
<td>12 000 l/h</td>
</tr>
</tbody>
</table>

- In “Adjust water flow” menu, select “Water flow” using enter key. LED next to the Test key on the control panel flashes.
- Remove caps on both the regulating valves.
- Click on test key in the appropriate menu option. Solenoid valve opens and the current flow is displayed.
- Use a large screwdriver (min. 10 mm) to adjust water-flow setting at the left-hand adjustment T-piece (smaller set value). Water level in the wetting cone should level out at approximately 15 to 20 mm below the overflow pipe outlet. Once a stable water level is reached, the required water-rate is set at the right-hand regulator valve (larger set value). The current flow can be read off the controller display.
- Once the operating state is stabilised, it may be necessary to re-regulate the water-flow to the wetting cone, in order to ensure adequate rinsing.
- Press the T key once more to end settings procedure.
7.5.2 Calibration of Powder Feeder

- Unscrew and remove wetting cone.
- In the “Calibrate powder feeder” menu select “Powder feeder” using Enter key. LED next to test key flashes.
- Hold a light PE container (fill-volume minimum 500 g) beneath the feeder screw pipe, press the test key. The dry feeder will commence operating at full speed. When there is sufficient powder in the container, stop the dry feeder by pressing the test key once more.
- Weigh collected powder and program the controller with the weight in grams using the up/down keys.
- After pressing the Enter key the controller calculates the dosing capacity in grams/minute and saves the value.
- After calibrating the dry feeder, reassemble the wetting cone.

7.5.3 Calibration of Dosing Pump for Liquid Concentrate (Ultromat® ATF)

- Determine unladen weight of the collector tank.
- Open feeder screw pipe.
- In the “Calibrate concentrate pump” menu, select “concentrate pump” using Enter key. LED next to test key flashes.
- Press the Test key to start the concentrate pump. The concentrate enters the collector tank.
- Press the Test key again to stop the pump. Weigh polymer quantity collected and program the controller with the weight in grams using the Up/Down keys.
- Pressing the Enter key instructs the controller to calculate the dosing capacity in grams/minute and saves the value.

7.5.4 Configuring Dosing Monitor for Liquid Concentrate (Ultromat® ATF)

Dosing monitoring is only applicable for models including “frequency inverter” option, controlling eccentric screw pump. It is not applicable for “4-20 mA” models.

<table>
<thead>
<tr>
<th>Control option</th>
<th>Pump</th>
<th>Dosing monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed controller</td>
<td>Eccentric screw pump</td>
<td>yes</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>gamma / L</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Sigma</td>
<td></td>
</tr>
</tbody>
</table>

- In “adjust flow control” menu, select “flow control” using Enter key. LED next to test key flashes.
- Use arrow keys to select about 10 % less than the minimum flow value. Press Test key to start concentrate pump.
- Push button on flow monitor to activate the “learn” process.
- Stop pump using test key.
- Press Enter to end configuration process.

Remark:
Minimum flow limit-values are set depending upon “Minimum frequency” parameters. To set low flow-limit values, the minimum frequency in the “Concentrate pump minimum frequency” menu must also have been re-set to a correspondingly low value. Once flow monitor has been configured, the concentrate pump minimum frequency is readjusted to its previous value.

IMPORTANT
The concentrate pump minimum frequency must be re-set to 25 Hz, after configuration of dosing monitoring. Lower values will cause irreparable damage to pump motor.
7.6 Service Menu

7.6.1 Flow settings
The "flow setting" menu is required when the turboDOS or the contact water meter fails. Until these functions are restored the Ultromat® can be operated in emergency operating mode. As a flow meter no longer delivers a signal, a fixed value is entered in the "manual flow input" menu. As a batch is processed the controller no longer obtains the flow values from the flow meter. It refers instead back to the fixed value. The fixed value input must naturally correspond to the previous intake value. This procedure should be used as briefly as possible. Since the water intake is not precisely determined, discrepancies can occur in the polymer solution concentration. After flow meter function has been restored the system must be switched back to "automatic flow measurement".

7.6.2 Testing agitator and powder feeder
The agitator and powder feeder can be switched on and off manually. Select the corresponding menu and press the T key.
The following menus are available
- Test agitator 1+2
- Test agitator 3
- Test powder feeder

7.6.3 Running Ultromat® empty
The "empty running" menu prevents a new batch from being processed in the Ultromat® and enables the booster pump (transfer pump) connected downstream to continue to run until material contents have dropped below the empty level.
Select the "empty running" menu option to activate the function and press the T key.
7.7 Settings of the frequency converter Altivar 11

7.7.1 Function of the controls

- Exit of a menu or parameter or return from the displayed value to the last saved value
- Three 7-segment displays
- Call up of a menu or a parameter or saving of the parameter or displayed menu
- Change to the next menu or parameter or decrease of the displayed value
- Change to the previous menu or parameter or increase of the displayed value

7.7.2 Access to the controls

Three 7-segment displays
- Call up of a menu or a parameter or saving of the parameter or displayed menu

7.7.3 Setting of the parameters

The frequency converter is factory-set to the following defaults:

Setting parameters level 1:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>bFr</td>
<td>50</td>
<td>Motor frequency (Hz)</td>
<td>50 / 60</td>
</tr>
<tr>
<td>ACC</td>
<td>0,1*</td>
<td>Ramp-up time (s)</td>
<td>0,1 - 99,9 s</td>
</tr>
<tr>
<td>dEC</td>
<td>0,1*</td>
<td>Run-down time (s)</td>
<td>0,1 - 99,9 s</td>
</tr>
<tr>
<td>LSP</td>
<td>0,0</td>
<td>Low speed at 4 mA (Hz)</td>
<td></td>
</tr>
<tr>
<td>HSP</td>
<td>100*</td>
<td>High speed at 20 mA (Hz)</td>
<td></td>
</tr>
<tr>
<td>ItH</td>
<td>1,5*</td>
<td>Thermal motor protection (A)</td>
<td>0 - 3,1</td>
</tr>
<tr>
<td>SP2</td>
<td>10</td>
<td>2. preselection frequency (Hz)</td>
<td>0 - 200</td>
</tr>
<tr>
<td>SP3</td>
<td>25</td>
<td>3. preselection frequency (Hz)</td>
<td>0 - 200</td>
</tr>
<tr>
<td>SP4</td>
<td>50</td>
<td>4. preselection frequency (Hz)</td>
<td>0 - 200</td>
</tr>
<tr>
<td>Alt / ACT</td>
<td>4A*</td>
<td>Configuration analogue input (4-20 mA)</td>
<td></td>
</tr>
</tbody>
</table>
Commissioning

Parameter „drC“:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnS</td>
<td>230</td>
<td>Nominal motor voltage (rating plate) (V)</td>
<td>100 - 500</td>
</tr>
<tr>
<td>FrS</td>
<td>50</td>
<td>Nominal motor frequency (rating plate) (Hz)</td>
<td>40 - 200</td>
</tr>
<tr>
<td>StA</td>
<td>20</td>
<td>Stability of the frequency controller (%)</td>
<td>0 - 100</td>
</tr>
<tr>
<td>FLG</td>
<td>20</td>
<td>Gain of the frequency controller (%)</td>
<td>0 - 100</td>
</tr>
<tr>
<td>UFr</td>
<td>50</td>
<td>Ri compensation (%)</td>
<td>0 – 200</td>
</tr>
<tr>
<td>nCr</td>
<td>1,5*</td>
<td>Nominal current fo the motor read from the rating plate</td>
<td>0,5 - 3,1</td>
</tr>
<tr>
<td>CLI</td>
<td>1,5*</td>
<td>Motor limiting current</td>
<td>1,0 - 3,1</td>
</tr>
<tr>
<td>nSL</td>
<td>0*</td>
<td>Slip compensation (Hz)</td>
<td>0 - 10</td>
</tr>
<tr>
<td>SLP</td>
<td>0*</td>
<td>Slip compensation (%)</td>
<td>0 - 150</td>
</tr>
<tr>
<td>COS</td>
<td>0,78*</td>
<td>Cos ϕ of the motor (rating plate)</td>
<td>0,50 - 1,00</td>
</tr>
</tbody>
</table>

Parameter „Fun“:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Submenu</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCC</td>
<td></td>
<td></td>
<td>Type of control</td>
</tr>
<tr>
<td>ACt</td>
<td>2C</td>
<td></td>
<td>2-wire control</td>
</tr>
<tr>
<td>tCt</td>
<td>LEL*</td>
<td></td>
<td>Type of 2-wire control</td>
</tr>
<tr>
<td>rrS</td>
<td>no*</td>
<td></td>
<td>Anti-clockwise rotation</td>
</tr>
<tr>
<td>PS2</td>
<td></td>
<td></td>
<td>Preselection frequencies</td>
</tr>
<tr>
<td>LiA</td>
<td>no</td>
<td></td>
<td>Assignment of the input LIA</td>
</tr>
<tr>
<td>Lib</td>
<td>no</td>
<td></td>
<td>Assignment of the input Lib</td>
</tr>
<tr>
<td>tLS</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rSF</td>
<td>no</td>
<td></td>
<td>Re-start at failures</td>
</tr>
<tr>
<td>rP2</td>
<td></td>
<td></td>
<td>Second ramp</td>
</tr>
<tr>
<td>LI</td>
<td>no</td>
<td></td>
<td>Assignment of the input to control the second ramp</td>
</tr>
<tr>
<td>LC2</td>
<td></td>
<td></td>
<td>2. Current limitation</td>
</tr>
<tr>
<td>nSt</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StP</td>
<td>no</td>
<td></td>
<td>Controlled run-down in case of power failure</td>
</tr>
<tr>
<td>brA</td>
<td>no*</td>
<td></td>
<td>Adjustment of run-down ramp</td>
</tr>
<tr>
<td>AdC</td>
<td></td>
<td></td>
<td>Automatic feeding of direct current</td>
</tr>
<tr>
<td>ACt</td>
<td>yes</td>
<td></td>
<td>Operating mode</td>
</tr>
<tr>
<td>tdC</td>
<td>0,5</td>
<td></td>
<td>Feed time</td>
</tr>
<tr>
<td>SdC</td>
<td>1,4</td>
<td>Input current</td>
<td></td>
</tr>
<tr>
<td>SFt</td>
<td></td>
<td></td>
<td>Timing frequency</td>
</tr>
<tr>
<td>ACt</td>
<td>LF</td>
<td>Frequency range</td>
<td></td>
</tr>
<tr>
<td>SFr</td>
<td>4</td>
<td>Timing frequency (kHz)</td>
<td></td>
</tr>
<tr>
<td>FLr</td>
<td>no</td>
<td>Aligning in operation</td>
<td></td>
</tr>
<tr>
<td>d0</td>
<td></td>
<td>Analogue output</td>
<td></td>
</tr>
<tr>
<td>ACt</td>
<td>no*</td>
<td>Assignment</td>
<td></td>
</tr>
<tr>
<td>Atr</td>
<td>yes*</td>
<td>Automatic re-start</td>
<td></td>
</tr>
<tr>
<td>bFr</td>
<td>50</td>
<td>Motor frequency (Hz)</td>
<td></td>
</tr>
<tr>
<td>SCS</td>
<td>yes</td>
<td>Saving of the configuration</td>
<td></td>
</tr>
<tr>
<td>FCS</td>
<td></td>
<td>Call up of the configuration</td>
<td></td>
</tr>
<tr>
<td>rEC</td>
<td></td>
<td>Call up saved configuration</td>
<td></td>
</tr>
<tr>
<td>InI</td>
<td></td>
<td>The factory-set defaults become the current configuration</td>
<td></td>
</tr>
</tbody>
</table>

Note: (*) These settings deviate from the values which are entered as defaults after returning to the factory-set values via the parameter >FCS=InI<.
7.7.4 Configuration of Ultromat® ATF ("Speed controller" control option)

After selecting “Liquid” operating mode, “Thermal motor protection = ItH” parameter must be adjusted to correspond to liquid concentrate pump. The “HSP = high speed at 20 mA” parameter must not be changed in liquid mode, as the speed controller is controlled by 4-12 mA current signal. Maximum frequency is 50 Hz.

7.8 Commissioning

Assuming set-up and installation have been correctly carried out, the three inspection openings are closed firmly and the feed hopper is filled with the appropriate dosing powder. After setting all operational parameters and completing calibration the plant can be started up.

Press the Start/Stop key to set the plant running. The plant commences operating and the automatic batching process will begin. During this first phase the plant must be monitored carefully. Check particularly that the level sensors are functioning correctly the first time a controlling position is reached.

The error message “Storage tank empty” is unavoidable at this stage, as all compartments are empty. This error message must therefore be confirmed.

NOTICE

Before starting the batching process the operating personnel must ensure that the emptying valves for the preparation and maturing chambers are closed.

8 Operating the Plant

8.1 Normal Operation

8.1.1 Preconditions for Correct Operation

To ensure malfunction-free operation of the Ultromat® plant there are important basic preconditions. The first of these are that the set-up and installation has been carried out according to the instructions given. It is vital that the operating parameters are set within reasonable limits and that calibration has been carried out conscientiously. This is particularly important as far as the level sensors are concerned. These cannot carry out their monitoring functions effectively if not correctly adjusted. It is important to note that there should be no on-site changes to parameters for the speed controller. In addition to these basic preconditions there is a series of points which must be taken into consideration when working with the plant itself. In particular the general safety notes (see section 4) must be observed.

The operation of the plant is only permitted to trained personnel who are familiar with the plant. The work of operating staff is limited chiefly to filling the feed hopper with powder, the rapid correction of malfunctions when operation is interrupted, and maintenance of the Ultromat®. In addition, staff are expected to monitor the processes regularly, and make sure all plant components are working correctly. One aspect of this, for example, is the occasional checking of display lights using the Test key. The control of the plant itself takes place automatically, however. Controller settings need not normally be carried out further during operation.

The plant can be completely shut down or re-started using the Start/Stop key during any phase of operation. An exception, however, is the re-starting of the plant after a malfunction occurrence. The general procedure involves the removal of the cause of the malfunction (see section 10 for more details) before confirming the corresponding error message. Each error message can, however, be altered to a warning by pressing the „Confirm Alarm“ key, so that the plant, if necessary, can resume provisional operation. In such cases the operating personnel must bear the responsibility for removing the cause of the malfunction as quickly as possible so that a more serious malfunction does not develop. A plant in warning mode must nevertheless be closely monitored in the meantime.

8.1.2 Supplying Dry Feeder with Powder

NOTICE

When filling the dry feeder, take care that operating personnel are not likely to slip on spilt polyelectrolyte powder. This can make surfaces very slippery when there is moisture present. It should be cleared up immediately.
If the feed hopper is not filled automatically, using one of the optional accessories, the dosing powder hopper must be continually checked and filled regularly. Filling can take place during operation. The feed hopper cover must actually be removed and the dosing powder carefully poured in.

8.2 Switching On Mains Power and Mains Power Failure Procedure

a) Switching on mains power
Each time the mains power is switched on, agitators commence operating regardless of the liquid level of the chambers. The plant only starts, however, when the batching process starts once the minimum switching position is reached in the storage compartment. If there is a power failure, however short, during the batching process, the batching process will not commence when the power is switched back on. When the mains power is switched on, furthermore, the warning light and siren will be activated for around 0.5 seconds.

b) Mains power failure procedure
After a power failure or a long break in the power, which has led to re-activating the controller, the plant recommences operating according to the state in which it was before the power failure. If the storage compartment levels are within the specified range, batching will not begin, even if, prior to the power failure, a batching process had been underway.

WARNING
After a power failure the agitators will start running automatically.

8.3 Emergency Measures
In an emergency the plant must be disconnected from the mains power using the main control. This will automatically cause the plant and all electrical systems to shut down.

WARNING
Using the “Start/Stop” key on its own is not enough in an emergency as the control is based on a toggle system and does not differentiate between two distinct switch states.

8.4 Plant Idle
Usually the plant is shut down using the Start/Stop key. If shut down is followed by a period where it is foreseeable that the plant will be lying idle for some time, the Ultromat® should also be disconnected from the mains power using the main switch. The main switch must be used in order to prevent unauthorised reactivation of the plant. During periods for longer than 2 days. When Ultromat® is not in use, all tank compartments must also be completely emptied. Emptying takes place using the pipe-connectors which are fitted on each compartment for this purpose. Rinse the tank thoroughly with water.

IMPORTANT
If not in use for more than 2 days, the powder feeder must be completely emptied.
9 Operational Errors

In order to avoid, as far as is possible, entering operational parameters incorrectly in the setup period, access to those menus relevant for the correct operation of the plant is limited. Only a small group of personnel have access to the code menus. These must be people who are familiar with the way the plant functions, and who are permitted to enter or change operating parameters. It must be restated that the maximum viscosity value for concentration settings must not exceed 1500 mPas.

The preset parameter values for the speed controller may not be altered on site. The parameters have been preprogrammed in the factory for use with the appropriate dry feeder. A possible operational error can arise when the cause of an error in the plant is not removed, and the confirm key has been thoughtlessly pressed. The original malfunctions can lead to more severe ones, which will threaten the plant operation simply because the plant has recommenced operating (see section 10).

In general, the danger from any form of operational error can be minimised as long as the Ultromat® is handled sensibly and with due care. Continuing function checks during operation forms as much a part of this as does following the steps given in the relevant sections of this instruction manual. Sources of malfunctions which can be easily solved are very often due to incorrectly set emptying valves and stopcocks in the water inlet pipes. Making sure the dry feeder hopper is filled with fresh material in good time is crucial to ensure troublefree operation.

WARNING
To prevent possible dangers from any remaining risks, follow all safety precautions when working with the Ultromat® plant.

10 Plant Malfunctions/Error Messages - Breakdown Advice

A plant malfunction is signalled acoustically via the warning siren and visually via the red warning light on the controller display in the control cabinet. In addition, the cause of the malfunction will be displayed in the controller display. The warning siren can be deactivated using the separate "Siren Off" key located in the front door of the control cabinet. The error analysis can take place based on the error message.

In order that the plant can recommence operation after a malfunction occurrence the "Confirm Alarm" key must be pressed to remove the error message once the cause of the malfunction has been removed.

When an alarm is triggered, agitators continue to run in pulse/pause mode. The (polymer solution) discharge pump release, connected downstream, is not affected. Possible malfunctions can arise, due to manufacturer's settings, which may affect the warning or display systems in the plant. If a malfunction should arise which does not appear in this list, or if a malfunction described in the list cannot be solved using the guidance given in the breakdown advice section, then please contact our customer service department.

WARNING
If, to remove the cause of a malfunction in the system, it is necessary to carry out work on the Ultromat® itself, then ensure that the plant is disconnected from mains power throughout and that it cannot be reactivated by unauthorised personnel. Agitators continue to run for the preset period in pulse/pause mode even after an error signal or when plant has been stopped using Stop-key.

It is crucial to effective plant operation that the level sensors are working correctly. When onsite settings are carried out, however, it may be found that a proximity sensor or a concentrate flow sensor has been set too sensitively, or suddenly responds to different operating conditions and gives a false warning signal for a nonexistent malfunction as a consequence. This possibility should be taken into consideration whenever an error analysis is undertaken. If sensors prove themselves to be too insensitive, it will be necessary to reset those sensors.
10.1 Fault Identification/Malfunctions/Breakdown Advice

Warnings

<table>
<thead>
<tr>
<th>Fault</th>
<th>Message on LCD display</th>
<th>Effect</th>
<th>Delay</th>
<th>Red LED</th>
<th>Alarm relay</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-flow monitor</td>
<td>Water flow low</td>
<td>Dosing, stopped in-flow active</td>
<td>3 sec.</td>
<td>On</td>
<td>Off</td>
<td>Increase in-flow</td>
</tr>
<tr>
<td>Concentrate pump minimum frequency</td>
<td>Min. frequency!</td>
<td></td>
<td>5 sec.</td>
<td>On</td>
<td>Off</td>
<td>Increase in-flow</td>
</tr>
<tr>
<td>Powder/liquid mains operation selection activated</td>
<td>Power down first</td>
<td>Stop state</td>
<td>1 sec.</td>
<td>On</td>
<td>Off</td>
<td>Switch on/off switch</td>
</tr>
<tr>
<td>In-flow monitor</td>
<td>Water flow high</td>
<td></td>
<td>3 sec.</td>
<td>Off</td>
<td>Off</td>
<td>Adjust in-flow</td>
</tr>
</tbody>
</table>

Malfunction

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Message on LCD display</th>
<th>Effect</th>
<th>Delay</th>
<th>Red LED</th>
<th>Alarm relay</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitator malfunction</td>
<td>Agitator error</td>
<td>Stop state</td>
<td>1 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Correct fault</td>
</tr>
<tr>
<td>Minimum sensor liquid level indicator</td>
<td>Stock empty</td>
<td>Stop state</td>
<td>5 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check level LSALL</td>
</tr>
<tr>
<td>Water in-flow below min. volume</td>
<td>Water flow low</td>
<td>Stop state</td>
<td>20 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check water in-flow</td>
</tr>
<tr>
<td>Dry feeder powder level</td>
<td>Lack of powder</td>
<td>Stop state</td>
<td>3 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Refill dry feeder</td>
</tr>
<tr>
<td>Overflow wetting cone</td>
<td>Wetting cone error</td>
<td>Stop state</td>
<td>3 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Correct fault</td>
</tr>
<tr>
<td>Level sensor defect, compartment 3</td>
<td>Stock level error</td>
<td>Stop state</td>
<td>5 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check level sensor</td>
</tr>
<tr>
<td>Concentrate pump error switch</td>
<td>Fluid pump error</td>
<td>Stop state</td>
<td>2 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check motor-protection</td>
</tr>
<tr>
<td>Speed controller malfunction</td>
<td>Inverter error</td>
<td>Stop state</td>
<td>5 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check speed controller</td>
</tr>
<tr>
<td>Overflow compartment 3</td>
<td>Stock overfill</td>
<td>Stop state</td>
<td>1 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check LSAHH level sensor</td>
</tr>
<tr>
<td>Dilution monitor</td>
<td>Dilution error</td>
<td>Stop state</td>
<td>3 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Correct fault</td>
</tr>
<tr>
<td>Concentrate drum empty</td>
<td>Concentrate low</td>
<td>Stop state</td>
<td>10 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Replenish concentrate</td>
</tr>
<tr>
<td>Dosing monitor</td>
<td>Flow contr. error</td>
<td>Stop state</td>
<td>20 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Replenish concentrate</td>
</tr>
<tr>
<td>Controller malfunction</td>
<td>Slot “n” failure</td>
<td>Stop state</td>
<td>1 sec.</td>
<td>Flashing</td>
<td>On</td>
<td>Check circuit board</td>
</tr>
<tr>
<td>Power supply off</td>
<td>-</td>
<td>Plant shut down</td>
<td>-</td>
<td>Off</td>
<td>On</td>
<td>Identify cause</td>
</tr>
</tbody>
</table>

Warnings do not require acknowledgment. The alarm light remains on continuously, the alarm is not triggered. When the cause of the fault has been removed, plant will automatically recommence normal operation.
10.2 Malfunctions in the Water Inlet Pipe

10.2.1 Water In-Flow Malfunctions

If the water in-flow rate falls below the set minimum value for longer than 3 seconds the dry feeder will be de-activated and the message “Water Flow Low” will appear in the display. After a total of 20 seconds of continuing low water flow a malfunction will be registered. The water inlet valve is closed. The message “Water Flow Low” remains on the display. If the water flow reaches the set minimum value again within the next 20 seconds the dry feeder will control back on after the “prerinse” period has elapsed.

Possible causes and countermeasures:
- Dirt in the pressure reducing valve. Solution: Clean filter-insert in pressure reducing valve.
- Operating pressure is too low. Solution: First of all check the strainer in the pressure reducing valve visually. If there is no dirt in there, reposition the throttle in the pressure reducing valve. Keep checking the water level in the wetting cone as you do this.
- The stop valve in the water pipe is not fully open. Solution: Turn tap CCW as far as it will go.

10.2.2 Water Meter Malfunctions

If the flow meter does not register flow when a batching process is in operation, the error message “Water Flow Low” appears. It is assumed that the turbine inside the flow meter is not running freely. The water meter should therefore be completely dismantled and cleaned.

10.2.3 Solenoid Malfunctions

During malfunction the solenoid will no longer open and close correctly.

Possible causes and countermeasures:
- Solenoid connections have worked loose. Solution: Check the cable connection and fix if necessary.
- The throttle hole or the pilot hole in the valve outlet is blocked. Solution: Open the solenoid carefully and clean the inside of the housing.
- The membrane inside the valve is defective. Solution: Replace with new valve.

10.3 Powder-Feed Malfunctions

When the level sensor in the dry feeder signals “powder low”, the controller stops the plant operation. Fault-analysis information for the dry feeder may be found in the separate operating manual for the dry feeder under section 7 “Problem Solving Measures”.

10.4 Malfunctions in the Wetting cone

If the warning sensor for the overflow monitor in the wetting cone is activated, the error message “Wetting Cone Error” appears. At the same time the batching process is automatically interrupted. The dry feeder is switched off and the solenoid valve will close as well, after a short interval.

Possible causes and counter-measures:
- The wetting cone is blocked with dosing powder. Solution: In case of emergency dismantle wetting cone (hopper and mixer) and clean carefully so that the water can flow freely again.
- There is too much water flowing through the wetting cone. Solution: Reset the water flow. In particular reduce the partial flow through the wetting cone.
10.5 Malfunctions in the Storage compartment

10.5.1 Storage compartment Runs Dry
If the sensor which detects when the chamber is running dry triggers the “stock empty”, then “stock empty” will appear in the display. Once the alarm has been confirmed, the discharge pump is paused until the minimum liquid-level in the storage compartment is reached.

Possible causes and counter measures:
- All chambers are empty. Solution: Ensure beforehand that all emptying valves are closed. Start plant operating and wait until all chambers have filled up sufficiently, and working solution can be continually extracted.
- Extraction rate exceeds the plant capacity. Solution: In exceptional cases and within narrow boundaries it is possible to raise the extraction capacity at the cost of the resting period of the Polyelectrolyte solution (taking into account dry feeder capacity). Otherwise the dosing capacity can be correspondingly increased by installing a diluting station.

10.5.2 Overflow in Storage compartment
If the Ultromat® does not control off the batching process once the maximum level has been reached, the overfill sensor (optional) will detect the rising level and interrupt the batching process. The error message “Stock overfill” will appear in the display. The controller will stop the batching process and close the solenoid.

WARNING

On no account remove inspection cover and reach inside the chamber if a malfunction occurs. The agitator is still in operation and can commence turning unexpectedly.

Possible Causes and Counter measures:
- The liquid level control that finishes the batching process has not triggered when the maximum level has been reached. Solution: Control off the plant with the main switch, in order to stop the agitators. Then dismantle the liquid level sensor and clean. Following replacement, check the control functions.

10.5.3 Contradictory Liquid level Messages in the Storage compartment
If the level sensors in the storage compartment send out two contradictory signals the display will read “Unlogical level”. The level switch should be cleaned if necessary and its controlling relay should be checked.

10.6 Agitator Malfunctions
The monitoring of the agitators is carried out by the motor protection switch. When a defect occurs, however, only the error message “Agitator Defect” will appear in the display. In the event of malfunction it should be checked whether the motor protection switch has triggered. The relevant motor should be checked for damage and should be replaced if necessary.

10.7 Concentration Errors
If the water flow is that high, that the dry feeder cannot convey enough powder to achieve the preset concentration, the message “water flow high” will appear. No alarm will be triggered, but the actual concentration will be displayed. In this case reduce the water flow.

10.8 Error Messages in Initial Start Up
If the extraction compartment is empty when plant commissioning takes place, the message “Tank empty” appears and an alarm is sounded. Once alarm is confirmed, batching recommences and alarm stops. The “Tank empty” message remains until minimum liquid level is reached. Once minimum liquid level is reached, discharge pump connected downstream is activated.
10.9 Hardware Fault Analysis
If the controller registers an internal hardware fault, please contact the ProMinent customer service department.

10.10 Dilution Faults
The dilution unit is fitted with a flow meter which detects the water flow. A limit contact monitors the minimum water flow. If the water flowing through the dilution unit falls below the preset measured variable, the error message “Dilution error” will appear. Countermeasures involve identifying the cause of the problem and restoring water flow.

11 Maintenance

WARNING
The plant should be disconnected from the mains power throughout all maintenance work, and there must be no possibility that unauthorised personnel can reactivate the plant.

11.1 Inspecting the Dry Feeder and the Wetting cone
The dry feeder should be regularly checked during operation to ensure it is operating correctly. It is not normally necessary to move the protective screen as observation should be possible using the inspection window. This is assuming, however, that the window is cleaned from time to time. For the dry feeder to operate smoothly, pay attention in particular that the solenoid locking flap opens and closes correctly and that the dosing powder is travelling through the feeder effectively. There is no need to check the dry feeder drive mechanism in general. The gearing is supplied permanently lubricated. If the plant is correctly operated, only the felt rings which form part of the drive shaft seal will need replacing.

At the same time as inspecting the dry feeder, the wetting cone should also be inspected. When doing this, make sure that the conical washing-in area of the hopper is completely under water during operation and that no powder lumps are forming.

11.2 Cleaning the Filter Insert in the Pressure-Reducing Valve
The amount of dirt in the pressure reducing valve can easily be judged by examining the transparent filter container. At the latest, when 2/3 of the filtration inserts have become clogged with dirt, the filter insert should be cleaned. As the rate at which filtration inserts are becoming clogged increases, the amount of water entering the plant is reduced. This leads to possible faults due to insufficient water in-flow.

To dismantle the filter insert, the plant should be placed into the stopped state. As the pressure reducing valve is located upstream from the solenoid valve, the stop valve should always be manually closed. The exact procedure for dismantling and reassembly of the insert may be found in the appendix of the manufacturer’s instruction manual.

11.3 Opening and Cleaning the Solenoid Valve
Before opening the solenoid valve the stop valve, located upstream, should be completely closed to close off the water flow. It is not necessary to dismantle the valve to open it. The four bolts should be unscrewed and the valve cap along with the rinsing insert removed (take care with the cable!). Next remove the inner parts and inspect the membrane for damage. At this point, the housing, in particular the throttle hole and the small pilot hole in the valve outlet, can be cleaned. Take care, when re-assembling, that the parts are put together in the correct order. Further instructions and the relevant diagram can be found in the appendix of the manufacturer’s instruction manual.
11.4 Dismantling and Examining the Flow Meter (turboDOS)

For safety reasons, when dismantling the flow meter too, the stop valve should be closed manually. The plant is effectively shut down. To dismantle the turbine rev. counter remove the corresponding screws in the water pipework. Then the turbine wheel inside the water meter can be checked to ensure it is running freely, and cleaned if necessary. When handling the flow meter always be careful with the cable.

When re-assembling, check direction of flow has been taken into account.

11.5 Changing the Mains Power Safety Fuse in the Controller

WARNING

To change the safety fuse the plant should be disconnected from the mains power - Danger of Death!

The mains power safety fuse is located in a safety-fuse holder in the controller. It is accessed by opening the controller housing and placing the upper section in the “parked state”. After releasing the bayonet fitting on the safety fuse connector, the defective safety fuse can be removed and replaced with a new one. Refasten the bayonet fitting and close the housing.

11.6 Removing the Inspection Cover on the Three Compartment Tank

WARNING

When plant is controled on do not remove the inspection cover. The agitators can start running unexpectedly - Danger of Injury!

Generally the plant should only be operated with the inspection cover fixed firmly in position. Only the cover on the storage compartment may be removed during operation when inspecting the liquid level and to monitor the level sensors (controlling correctly). We recommend that care be taken, however, and on no account should you reach inside the chamber.

You must always remember to check that before the plant is put into operation, all covers are in position and fastened down.

11.7 Rinsing the Multi-chamber Tank

In order to remove remaining polyelectrolyte solution and to prevent clogging of the dosing system the tank must be thoroughly rinsed with water if it is to be left idle for any length of time. The plant should be stopped and disconnected from mains power for safety reasons. Only then can the inspection covers be removed, so that the inside of the tank can be cleaned. In addition the entire wetting cone should be rinsed again.
12.1 Declaration of Conformity

EC Declaration of Conformity

We,

ProMinent Dosiertechnik GmbH
Im Schuhmachergewann 5 - 11
D - 69123 Heidelberg

hereby declare that, on the basis of its functional concept and design and in the version brought into circulation by us, the product specified in the following complies with the relevant, fundamental safety and health stipulations laid down by EC regulations. Any modification to the product not approved by us will invalidate this declaration.

Product description: Polyelectrolyte preparation system, Ultromat

Product type: AT / ATF / AF / ATP / ATFP / ATD / ATFD / MT

Serial number: see type identification plate on device

Relevant EC regulations:
EC - machine regulation (89/392/EEC) subsequently 93/44/EEC
EC - low voltage regulation (73/23/EEC)
EC - EMC - regulation 89/336/EEC subsequently 92/31/EEC

Harmonised standards used, in particular:
EN 292-1, EN 292-2, EN 563
EN 60204-1
EN 50081-1/2, EN 50082-1/2

National standards and other technical specifications used, in particular:

Date/manufacturer’s signature: 12.03.02

The undersigned: Dr. Rainer V. Dulger, Executive Vice President R&D and Production
12.2 Assembly Drawing AT 400

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1.5 von den angegebenen Maßen abweichen.

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5 .

Positionen:

Standardausführung:

a. Behälter PP
b. Wasserrohrleitung
 - in PVC/Messing
 - alle Dichtungen in EPDM
c. Einspül- und Vermischungseinrichtung
d. Trockengutdosiervorrichtung
 - inkl. Kessel, Heizung, Verschlusskappe, Lockerungsrad
e. Rührwerke in 1. und 2. Kammer
f. Schaltschrank/Steuerung

Positions:

standard equipment:

a. tank, PP
b. water piping
 - made of PVC/brass
 - all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper
 - incl. crank, heating, closing cap, aerating wheel
e. stirrer in chamber 1 & 2
f. control panel

Positions:

Version standard:

a. Cuve en PP
b. Armature hydraulique
 - En PVC/Laiton
tous les joints en EPDM
c. Armature dhumidification et de mélange
d. Doseur de pulvérulent, PP
 - avec boîtier de protection, bague chauffante, volet d'arrêt, roue d'ameublissement
e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

L'agitateur de la chambre 3 ne fait pas partie de la version standard.
12.3 Assembly Drawing AT 1000

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Tolérance générale +/- 1,5 liée à la matière utilisée.

Positionen:

Standardausführung:
a. Behälter PP
b. Wasserversorgung in PVC/Messing, alle Dichtungen in EPDM
c. Einspü- und Vermischungseinrichtung
d. Trockengutdosierer PP
 inkl. Kühle, Heizung, Verschlußkappe, Lockierungsrad
e. Rührwerke in 1. und 2. Kammer
f. Schaltschrank/Steuerung
	nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:

Standard equipment:
a. tank PP
b. water piping made of PVC/brass, all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper
 incl. crank, heating, closing cap, aerating wheel
e. stirrer in chamber 1 & 2
f. control panel

standard equipment not includes electric stirrer in chamber 3

Positions:

Version standard:
a. Cuve en PP
b. Armature hydraulique
 En PVC/Laiton
 tous les joints en EPDM
c. Armature d’humidification et de mélange
d. Doseur de poudre de PP
 avec boîtier de protection, bague chauffante, volut d’arrêt, roue d’amélioration

e. Agitatrice dans les chambres 1 et 2
f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.
12.4 Assembly Drawing AT 2000

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1.5 von den angegebenen Maßen abweichen.

Positionen:

Standardausführung:
a. Behälter PP
b. Wasserversorgung in PVC/Messing, alle Dichtungen in EPDM
c. Einspül- und Vermischungseinrichtung
d. Trockengutdosierer PP inkl. Kulisse, Heizung, Verschlußkappe, Lockerungsrad
e. Rührwerke in 1. und 2. Kammer
f. Schaltschrank/Steuerung

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:

standard equipment:
a. tank PP
b. water piping made of PVC/brass, all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper incl. crank, heating, closing cap aerating wheel
e. stiner in chamber 1 & 2
f. control panel

tandard equipment not includes electric stiner in chamber 3

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Position standard:
a. Cuve en PP
b. Armature hydraulique En PVC/Laiton tous les joints en EPDM
c. Armature d'humidification et de mélange
d. Doseur de pulvérulent. PP avec boîtier de protection, bague chauffante, volet d'arrêt, roue d'ameublissement
e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

L'agitateur de la chambre 3 ne fait pas partie de la version standard.
Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Positionen:
Standardausführung:

a. Behälter PP
b. Wasserverrohrung in PVC/Messing, alle Dichtungen in EPDM
c. Einstell- und Vermischungseinrichtung
d. Trockengutdosierer PP inkl. Kurbel, Heizung, Verschlusskappe, Lockerschaft

e. Rührwerk in 1. und 2. Kammer
f. Schaltschrank/Steuerung

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:
standard equipment:
a. tank PP
b. water piping made of PVC/brass, all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper including crank, heating, closing cap, aerating wheel
e. stirrer in chamber 1 & 2
f. control panel

electric stirrer in chamber 3

Positions:
Version standard:
a. Cuve en PP
b. Armature hydraulique En PVC/Laiton
tous les joints en EPDM
c. Armature d’humidification et de mélange
d. Doseur de pulvérisant, PP avec boîtier de protection, bague chauffante, volet d’arrêt, roue d’ameublissement
e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.

Tolérance générale +/- 1.5 liée à la matière utilisée.
12.6 Assembly Drawing AT 8000

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Positions:
- a. tank PP
- b. water piping
 - in PVC/brass,
 - all gaskets made of EPDM
- c. powder feeder and hopper
 - incl. crank, heating, closing cap
 - aerating wheel
- d. stirrer in chamber 1 & 2
- e. control panel

Standard equipment not includes:
- electric stirrer in chamber 3

Version standard:
- a. Cuve en PP
- b. Armature hydraulique
 - En PVC/Laiton
 - tous les joints en EPDM
- c. Armature d’humidification et de mélange
- d. Doseur de pulvérulent PP
 - avec bolier de protection, bague chauffante,
 - volet d’arrêt, roue d’amortissement
- e. Agitateur dans les chambres 1 et 2
- f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.

Positionen:
- a. Behälter PP
- b. Wasserversorgung
 - in PVC/Messing,
 - alle Dichtungen in EPDM
- c. Einspul- und Vermischungseinrichtung
- d. Tröckengutdosierrange PP
 - inkl. Kupplung, Heizung,
 - Verschlusskappe, Lüftungsrad
- e. Rührwerk in 1. und 2. Kammer
- f. Schaltkasten/Steuerung

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3.

Tolerances générales +/- 1,5 liée à la matière utilisée.

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.
Appendix

12.7 Assembly Drawing ATF 4000

Positions:
- **Standardausführung:**
 - a. Behälter PP
 - b. Wasserverrohrung in PVC/Messing, alle Dichtungen in EPDM
 - c. Einspüle- und Vermischungseinrichtung
 - d. Trockengutdosierer PP
 - e. Rührwerke in 1. und 2. Kammer
 - f. Schaltschrank/Steuerung

 - nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

- **Positions:**
 - a. tank PP
 - b. water piping made of PVC/brass, all gaskets made of EPDM
 - c. mixing vessel
 - d. powder feeder and hopper incl. crank, heating, closing cap, aerating wheel
 - e. stirrer in chamber 1 & 2
 - f. control panel

- **Positions:**
 - standard equipment:
 - a. tank PP
 - b. water piping made of PVC/brass, all gaskets made of EPDM
 - c. mixing vessel
 - d. powder feeder and hopper incl. crank, heating, closing cap, aerating wheel
 - e. stirrer in chamber 1 & 2
 - f. control panel

- **Positions:**
 - standard equipment not includes electric stirrer in chamber 3

- **Version standard:**
 - a. Cuve en PP
 - b. Armature hydraulique en PVC/Laiton
 - c. Armature d’humidification et de mélange
 - d. Doseur de pénétrant, PP avec boitier de protection, bague chauffante, volet d’arrêt, roue d’ameublement
 - e. Aglateur dans les chambres 1 et 2
 - f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Tolérance générale +/- 1.5 liée à la matière utilisée.
12.8 Assembly Drawing ATF 1000

Positions:

Standardausführung:

a. Behälter PP
b. Wasserversorgung in PVC/Messing, alle Dichtungen in EPDM
c. Einspü- und Vermischungseinrichtung
d. Trockengutsdosierer PP inkl. Kulisse, Heizung, Verschlussskappe, Lockerungsrad
e. Rührwerke in 1. und 2. Kammer
f. Schalt- schrank/Steuerung

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:

standard equipment:

a. tank PP
b. water piping made of PVC/brass, all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper incl. crank, heating, closing cap, aerating wheel

e. stirrer in chamber 1 & 2
f. control panel

standard equipment not includes electric stiner in chamber 3

Positions:

Version standard:

a. Cuve en PP
b. Armature hydraulique En PVC/Laiton
c. Armature d’humidification et de mélange en PVC/Laiton
d. Doseur de pulvérulent. PP avec boîtier de protection, bague chauffante, volet d’arrêt, roue d’ameublissement

e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.

Die ausführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.

Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5 .

Tolerance générale +/- 1.5 liée à la matière utilisée.
Positions:

Standardausführung:

a. Behälter PP
b. Wasseranströmung in PVC/Messing, alle Dichtungen in EPDM
c. Einspül- und Vermischungseinrichtung
d. Trockengutdosierer PP inkl. Kugel, Heizung, Verschlusskappe, Lockerungrad
e. Rührwerk in 1. und 2. Kammer
f. Schaltschrank/Steuerung

nenicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:

standard equipment:

a. tank PP
b. water piping made of PVC/brass, all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper incl. crank, heating, closing cap aeration wheel
e. stirrer in chamber 1 & 2
f. control panel

nenicht zum Lieferumfang der Standardausführung gehören electric stirrer in chamber 3

Positions:

Version standard:

a. Cuve en PP
b. Armature hydraulique
 En PVC/Laiton
tous les joints en EPDM
c. Armature d’humidification et de mélange
d. Doseur de poudre PP
 avec boîtier de protection, bague chauffante, volant d’arriêt, roue d’ameublissement
e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

L’agitateur de la chambre 3 ne fait pas partie de la version standard.
Dependig on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Die ausgeführten Abmessungen können bedingt durch den eingesetzten Werkstoff um +/- 1,5 von den angegebenen Maßen abweichen.

Positions:
Standardausführung:
a. Behälter PP
b. Wasserverrohrung in PVC/Messing
alle Dichtungen in EPDM
c. Einsp- und Vermischungseinrichtung
d. Trockengutdosierer PP
 inkl. Kulisse, Heizung
 Verschlusskappe, Lockerungsrad
e. Rührwerke in 1. und 2. Kammer
f. Schaltschrank/Steuerung

Version standard:
a. Cuve en PP
b. Armature hydraulique
 En PVC/Laiton
 tous les joints en EPDM
c. Armature d’humidification et de mélange
d. Doseur de pulvérulent. PP
 avec boîtier de protection, bague chauffante,
 volet d’arrêt, roue d’ameublissement
e. Agitateur dans les chambres 1 et 2
f. Coffret de commande

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

standard equipment:
a. tank PP
b. water piping
 made of PVC/brass,
 all gaskets made of EPDM
c. mixing vessel
d. powder feeder and hopper
 incl. crank, heating, closing cap
 aerating wheel
e. stirer in chamber 1 & 2
f. control panel

standard equipment not includes electric stirer in chamber 3

Tolerance générale +/- 1,5 lié à la matière utilisée.

L’agitateur de la chambre 3 ne fait pas partie de la version standard.
Depending on the used materials, dimensions shown in this drawing may tolerate +/- 1.5.

Tolerance générales +/- 1.5 liée a la matière utilisée.

Positionen:
Standardausführung:
- a. Behälter PP
- b. Wasserverschraubung in PVC/Messing, alle Dichtungen in EPDM
- c. Einpüls- und Vermischungseinrichtung
- d. Trockengutstörer PP inkl. Kuhse, Heizung, Verschlusskappe, Locherungsrad
- e. Rührwerke in 1. und 2. Kammer
- f. Schaltschema/Steuerung

nicht zum Lieferumfang der Standardausführung gehört das Rührwerk in Kammer 3

Positions:
Standard equipment:
- a. tank PP
- b. water piping made of PVC/brass, all gaskets made of EPDM
- c. mixing vessel
- d. powder feeder and hopper incl. crank, heating, closing cap aerating wheel
- e. stirer in chamber 1 & 2
- f. control panel

standard equipment not includes electric stirer in chamber 3

Positions:
Version standard:
- a. Cuve en PP
- b. Armature hydraulique
- c. Armature d'humidification et de mélange
- d. Doseur de pulvérulent. PP avec boîtier de protection, bague chauffante, volant d'arrêt, roue d'amisblaselement
- e. Agitateur dans les chambres 1 et 2
- f. Coffret de commande

L'agitateur de la chambre 3 ne fait pas partie de la version standard.
12.13 Programming Menu Ultromat® ATF/96
Ultromat® AT/96 and ATF/96 Commissioning Protocol

Ultromat type:

<table>
<thead>
<tr>
<th>Type</th>
<th>400</th>
<th>1 000</th>
<th>2 000</th>
<th>4 000</th>
<th>8 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATF/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ident-code:

<table>
<thead>
<tr>
<th>ULSA</th>
<th>02/4.1</th>
<th>T</th>
</tr>
</thead>
</table>

Software version:

/ example

Project number:

Calibration settings:

<table>
<thead>
<tr>
<th></th>
<th>Powder</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Calibrated feed rate</td>
<td>g/min</td>
<td></td>
</tr>
<tr>
<td>Water in flow</td>
<td>L/h</td>
<td></td>
</tr>
<tr>
<td>Flow monitor switch threshold</td>
<td>g/min</td>
<td></td>
</tr>
</tbody>
</table>

Commissioning settings:

<table>
<thead>
<tr>
<th>Commissioning parameters</th>
<th>Default setting</th>
<th>Powder operation setting</th>
<th>Liquid operation setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 400 min. water in flow</td>
<td>500 L/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 1000 min. water in flow</td>
<td>1 200 L/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 2000 min. water in flow</td>
<td>2 400 L/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 4000 min. water in flow</td>
<td>5 000 L/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 8000 min. water in flow</td>
<td>10 000 L/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater on time</td>
<td>5 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater off time</td>
<td>35 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In flow pre rinse period</td>
<td>7 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In flow post rinse period</td>
<td>5 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitators 1 + 2 on time</td>
<td>15 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitators 1 + 2 off time</td>
<td>15 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitator 3 on time</td>
<td>5 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitator 3 off time</td>
<td>10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrate pump min. frequency</td>
<td>25 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access code</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Powder product

- **Trade name:**
- **Supplier:**

Liquid product

- **Trade name:**
- **Supplier:**

Client:

Date:

Location: