Assembly and operating instructions
Ultromat® AF and ATF
with Terminal Boxes and Pressure Sensor

Please carefully read these operating instructions before use! - Do not discard!
The operator shall be liable for any damage caused by installation or operating errors!
Technical changes reserved.
Table of contents

1 Ultromat® product identification ... 5
 1.1 Ultromat® AF with Pressure Sensor product identification 5
 1.2 Ultromat® ATF with pressure sensor product identification 5
 1.3 Front view Ultromat® AF/ATF with pressure sensor .. 5
 1.4 Plan view Ultromat® AF/ATF with pressure sensor .. 6
 1.5 About This Product ... 6

2 Safety Chapter ... 7
 2.1 Explanation of the safety information ... 7
 2.2 Correct and Proper Use .. 8
 2.3 Users’ Qualifications ... 9
 2.4 Information in the Event of an Emergency .. 10
 2.5 Description and Testing of the Safety Equipment ... 10
 2.6 Ultromat® Safety Information ... 11
 2.7 Sound Pressure Level .. 11

3 Transport and Storage of the System ... 12
 3.1 Transport and Storage of the System ... 12

4 Information on the system .. 13
 4.1 Application .. 13
 4.2 Design ... 13
 4.3 System dimensions ... 13

5 Design and function ... 16
 5.1 Three-chamber reservoir ... 16
 5.2 Flush fitting .. 16
 5.3 Dry Material Feeder (ATF only) ... 16
 5.4 Agitators .. 17
 5.5 Power Socket for the Connection of a Conveyor (only ATF) 17
 5.6 Terminal Box .. 17
 5.7 Crane Lifting Lugs ... 17
 5.8 Ultromat® options ... 17
 5.8.1 Agitator for Chamber 3 (Agitator 3) ... 17
 5.8.2 Overflow Protection for the Ultromat® .. 17
 5.8.3 Vibrator .. 17
 5.8.4 Discharge pipework .. 18

6 Assembly and Installation .. 19
 6.1 Assembly ... 19
 6.2 Installation - Hydraulic .. 19
 6.3 Installation - Electrical .. 20

7 Controller .. 21
 7.1 Terminal boxes AF/ATF ... 21

8 Commissioning ... 22
 8.1 Assembly, Preparatory Work ... 22
 8.2 Settings for Commissioning ... 22
 8.3 Water Supply Setting ... 22
 8.4 Calibrating the Dry Material Feeder .. 23
 8.5 Adjusting the Concentration ... 23
8.5.1 Adjusting the Concentration of the Polymer Solution in the Ultromat® AF / ATF................................. 23
8.6 Adjusting the Capacitive Sensor... 24
8.7 Operation of the System.. 24

9 Operation of the System.. 26
9.1 Prerequisites for Correct and Proper Operation................. 26
9.2 Feeding the Dry Material Feeder with Powdered Polymer (ATF).. 26
9.3 Behaviour When Switching on Mains Power and in the Event of Mains Power Failure.. 26
9.4 Decommissioning... 26
9.5 Disposal... 27

10 Incorrect Operation of the System... 28

11 Troubleshooting... 29
11.1 Unspecified Malfunctions.. 29
11.2 Sensors.. 29

12 Maintenance.. 30
12.1 Dry Material Feeder.. 30
12.2 Cleaning the Screen Insert in the Pressure Reducer............. 30
12.3 Dismantling the Cover of an Inspection Opening............. 30
12.4 Cleaning the Surface of the Ultromat®.............................. 30

13 Spare Parts and Accessories... 31

14 Appendix... 32

15 EC Declaration of Conformity.. 34

16 Commissioning report.. 35

17 Index.. 36
1 Ultromat® product identification

1.1 Ultromat® AF with Pressure Sensor product identification

<table>
<thead>
<tr>
<th>Ultromat AF</th>
<th>1037294</th>
<th>1037295</th>
<th>1037296</th>
<th>1037297</th>
<th>1037298</th>
<th>1037299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>AF 400</td>
<td>AF 1000</td>
<td>AF 2000</td>
<td>AF 4000</td>
<td>AF 6000</td>
<td>AF 8000</td>
</tr>
<tr>
<td>Reservoir content (litre)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
</tbody>
</table>

1.2 Ultromat® ATF with pressure sensor product identification

<table>
<thead>
<tr>
<th>Ultromat ATF</th>
<th>1037300</th>
<th>1037301</th>
<th>1037302</th>
<th>1037303</th>
<th>1037314</th>
<th>1037315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ATF 400</td>
<td>ATF 1000</td>
<td>ATF 2000</td>
<td>ATF 4000</td>
<td>ATF 6000</td>
<td>ATF 8000</td>
</tr>
<tr>
<td>Reservoir content (litre)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
</tbody>
</table>

1.3 Front view Ultromat® AF/ATF with pressure sensor

Fig. 1: Front view Ultromat AF/ATF with pressure sensor

1. Agitator for chamber 1
2. Dry material feeder (ATF)
3. Liquid polymer connection
4. Y-Flush inlet
5. Agitator for chamber 2
6. Terminal box
7. Agitator for chamber 3 (optional)
8. Overflow
9. Stopcock
10. Flow meter
11. Solenoid valve
12. Pressure reducer
13. Shut-off valve
1.4 Plan view Ultromat® AF/ATF with pressure sensor

![Diagram of Ultromat® AF/ATF with pressure sensor]

Fig. 2: Plan view Ultromat® AF/ATF with pressure sensor

<table>
<thead>
<tr>
<th>1. Dry material feeder (ATF)</th>
<th>6. Discharge pipework (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Motor for dry material feeder (ATF)</td>
<td>7. Inspection opening for chamber 2</td>
</tr>
<tr>
<td>3. Inspection opening for chamber 3</td>
<td>8. Metering pipe heating (ATF)</td>
</tr>
<tr>
<td>4. Pressure sensor level measurement chamber 3</td>
<td>9. Inspection opening for chamber 1</td>
</tr>
<tr>
<td>5. Shut-off valves</td>
<td></td>
</tr>
</tbody>
</table>

1.5 About This Product

The Ultromat® AF/ATF from ProMinent is a preparation system for polyelectrolytes for connection to an external control.

The Ultromat® AF can be used in any application where synthetic liquid polymers have to be prepared for working solutions.

The Ultromat® ATF can be used in any application where free-flowing synthetic powder polymers or liquid polymers have to be prepared for working solutions.
2 Safety Chapter

2.1 Explanation of the safety information

Introduction

These operating instructions provide information on the technical data and functions of the product. These operating instructions provide detailed safety information and are provided as clear step-by-step instructions.

The safety information and notes are categorised according to the following scheme. A number of different symbols are used to denote different situations. The symbols shown here serve only as examples.

- **DANGER!**
 - Nature and source of the danger
 - Consequence: Fatal or very serious injuries.
 - Measure to be taken to avoid this danger
 - Danger!
 - Denotes an immediate threatening danger. If this is disregarded, it will result in fatal or very serious injuries.

- **WARNING!**
 - Nature and source of the danger
 - Possible consequence: Fatal or very serious injuries.
 - Measure to be taken to avoid this danger
 - Warning!
 - Denotes a possibly hazardous situation. If this is disregarded, it could result in fatal or very serious injuries.

- **CAUTION!**
 - Nature and source of the danger
 - Possible consequence: Slight or minor injuries, material damage.
 - Measure to be taken to avoid this danger
 - Caution!
 - Denotes a possibly hazardous situation. If this is disregarded, it could result in slight or minor injuries. May also be used as a warning about material damage.
2.2 Correct and Proper Use

WARNING!
Danger caused by incorrect use!
Incorrect use of the Ultromat® can result in hazardous situations.

- The Ultromat® is only designed to produce a polymer solution as a flocculent from powdered polymer or liquid concentrate and with drinking water.
- All other uses or a modification of the system are only permitted with the written authorisation of ProMinent Dosiertechnik GmbH, Heidelberg!
- The system is not designed for use in areas at risk from explosion!
- The correct and proper operation of the system cannot be guaranteed if non-genuine parts or third party accessories are used.
- Please observe the relevant national regulations and the information provided in the operating instructions at all phases of the system’s life!
- The Ultromat® may only be operated by adequately qualified personnel.
2.3 Users' Qualifications

WARNING!
Danger of injury with inadequately qualified personnel!
If inadequately qualified personnel work on the unit or loiter in the hazard zone of the unit, this could result in dangers that could cause serious injuries and material damage.
- All work on the unit should therefore only be conducted by qualified personnel.
- Unqualified personnel should be kept away from the hazard zone.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly / Installation</td>
<td>trained qualified personnel</td>
</tr>
<tr>
<td>Commissioning</td>
<td>technical experts</td>
</tr>
<tr>
<td>Operation</td>
<td>instructed personnel</td>
</tr>
<tr>
<td>Maintenance / Repair</td>
<td>Customer service department</td>
</tr>
<tr>
<td>Decommissioning / Disposal</td>
<td>technical experts</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>instructed personnel</td>
</tr>
</tbody>
</table>

Explanation of the terms:
- A technical expert is deemed to be a person who is able to assess the tasks assigned to him and recognise possible hazards based on his/her technical training and experience, as well as knowledge of pertinent regulations.
 Note: A technical qualification is typically proven by the required completion of a technical training course. The assessment of a person's technical training can also be based on several years of work in the relevant field.
- A qualified employee is deemed to be a person who is able to assess the tasks assigned to him and recognise possible hazards based on his/her technical training, knowledge and experience, as well as knowledge of pertinent regulations.
 Note: The assessment of a person's technical training can also be based on several years of work in the relevant field.
- An instructed person is deemed to be a person who has been instructed and, if required, trained in the tasks assigned to him/her and possible dangers that could result from improper behaviour, as well as having been instructed in the required protective equipment and protective measures.
- Customer service department refers to service technicians, who have received proven training and have been authorised by ProMinent to work on the system.

Note for the system operator
The pertinent accident prevention regulations, as well as all other generally acknowledged safety regulations, must be adhered to!
2.4 Information in the Event of an Emergency

WARNING!
Information in the Event of an Emergency
Possible consequence: Fatal or very serious injuries.
Switch off the system with the red-yellow mains switch.
External control and control cabinet!
The red-yellow mains switch is located on the operator's side. Its precise location depends on the layout on site. The operator is responsible for labelling this switch.

2.5 Description and Testing of the Safety Equipment

CAUTION!
Propellers are rotating in the reservoirs!
Slight or minor injuries.
Switch off the system and only then remove the screwed cover of an inspection opening!

Fig. 3: Safety equipment

Warning labels
- 1 Warning label "Warning of injury to hands"
- 2 Warning label "Warning of hazardous electrical voltage"
- 3 Warning label "Warning of hot surfaces" (ATF)

Test: Check whether the labels are still affixed and legible.
2.6 Ultromat® Safety Information

WARNING!
Qualification of personnel
Danger due to incorrect operation of the system
The operating personnel must be instructed by a ProMinent service technician" (When the system is first operated)
The operating instructions must be available by the system!

WARNING!
Danger of electric shock!
Possible consequence: Fatal or very serious injuries
The control cabinet must always be closed during operation.
The mains switch must be set to "0" and secured against restart before any installation or maintenance work can begin.

CAUTION!
Propellers are rotating in the reservoirs!
Slight or minor injuries.
Switch off the system and only then remove the screwed cover of an inspection opening!

CAUTION!
A screw conveyor and a loosening wheel are located under the safety guard of the dry material feeder.
Slight or minor injuries. Material damage.
Do not reach into the dry material feeder.

CAUTION!
Hot surface!
Incorrectly set heating on the metering pipe may become hot!
Ensure that the metering pipe heating is correctly set!

2.7 Sound Pressure Level

The sound pressure level is < 70 dB (A) for powdered polymer, according to EN ISO 11202:1997 (Acoustics - Noise emission from machinery and equipment)
3 Transport and Storage of the System

3.1 Transport and Storage of the System

CAUTION! Fractures in plastic material may result from incorrect loading

- Only move the Ultromat® system when empty
- The reservoir wall may not be subjected to point loads
- Avoid heavy vibrations and impact loads
- Only move the system with suitable hoisting and lifting equipment
- When using forklift trucks, use long forks, which extend across the entire depth of the three-chamber reservoir
- If a crane is used, fit the transport belts such that shear stress is avoided, even if lifting lugs exist
- The support must be able to carry the weight of the system

Ambient conditions for storage and transport

Permissible ambient temperature: -5 °C to +50 °C
Humidity: none
Other: No dust, no direct sunlight
4 Information on the system

4.1 Application

The Ultromat® AF/ATF manufactured by ProMinent is a polyelectrolyte preparation system.

4.2 Design

Almost all commercially available polymers can be used.

Concentrations of 0.05 to 0.5 % can be set. The viscosity of the polymer solution produced may not exceed 1500 mPas. Please refer to the application data sheets of the polymer suppliers for information about the viscosity of the different polymer solutions.

Adjust the flow rate of the preparation water to make full use of the preparation chamber. Concentrations of greater than 0.5 % can reduce the capacity of the preparation performance.

The maturing time available for the production of a polymer solution depends on the discharge quantity and the volumetric capacity of the Ultromat® and is approximately 60 minutes at a maximum discharge rate.

4.3 System dimensions

<table>
<thead>
<tr>
<th>Ultromat AF</th>
<th>400</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir content (litre)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>Chamber volume (l)</td>
<td>133</td>
<td>333</td>
<td>666</td>
<td>1333</td>
<td>2000</td>
<td>2666</td>
</tr>
<tr>
<td>Discharge rate (l/h)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>Maturing time (min)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Dimensions LxWxH (mm)</td>
<td>1742x905x876</td>
<td>2396x970x1226</td>
<td>3095x1155x1377</td>
<td>3081x1433x1923</td>
<td>3936x1682x1924</td>
<td>4377x1895x1929</td>
</tr>
<tr>
<td>Net weight (kg)</td>
<td>140</td>
<td>350</td>
<td>400</td>
<td>550</td>
<td>850</td>
<td>1150</td>
</tr>
<tr>
<td>Total weight (kg)</td>
<td>540</td>
<td>1350</td>
<td>2400</td>
<td>4550</td>
<td>6850</td>
<td>9150</td>
</tr>
<tr>
<td>Overflow connection</td>
<td>DN 40</td>
<td>DN 50</td>
<td>DN 50</td>
<td>DN 65</td>
<td>DN 65</td>
<td>DN 80</td>
</tr>
<tr>
<td>Discharge connection</td>
<td>DN 25</td>
<td>DN 25</td>
<td>DN 32</td>
<td>DN 40</td>
<td>DN 40</td>
<td>DN 50</td>
</tr>
<tr>
<td>Water supply for redilution</td>
<td>1"</td>
<td>1"</td>
<td>1"</td>
<td>1 1/2"</td>
<td>11/2"</td>
<td>2"</td>
</tr>
</tbody>
</table>

Please refer to the dimensions sheet for the precise dimensions of the individual Ultromat® system!
Information on the system

<table>
<thead>
<tr>
<th>Ulrotomat AF</th>
<th>400</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
</table>
| Liquid concen‐
trate pipe‐
work | DN 15| DN 15| DN 15| DN 20| DN 20| DN 20|
| Max. water supply | 1,500 l/h | 1,500 l/h | 3,000 l/h | 6,000 l/h | 8,000 l/h | 12,000 l/h |
| Elec. power input | 1.5 kW | 2.6 kW | 3.2 kW | 5.0 kW | 5.0 kW | 9.5 kW |
| External fuse | 25 A | 40 A |
| Agitator 1 | | | | | | |
| Power | 0.25 kW | 0.55 kW | 0.75 kW | 1.10 kW | 1.10 kW | 2.20 kW |
| Speed (50 Hz) | 750 rpm |
| Enclosure rating | IP 55 |
| Agitator for chambers 2 + 3 (optional) | | | | | | |
| Power | 0.18 kW | 0.55 kW | 0.75 kW | 1.10 kW | 1.10 kW | 1.10 kW |
| Speed (50 Hz) | 750 rpm |
| Enclosure rating | IP 55 |

<table>
<thead>
<tr>
<th>Ulrotomat ATF</th>
<th>400</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir content (litre)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>Chamber volume (l)</td>
<td>133</td>
<td>333</td>
<td>666</td>
<td>1333</td>
<td>2000</td>
<td>2666</td>
</tr>
<tr>
<td>Discharge rate (l/h)</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>Maturing time (min)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Dimensions LxWxH (mm)</td>
<td>1742x905x916</td>
<td>2396x970x1266</td>
<td>3095x1155x1416</td>
<td>3081x1454x1953</td>
<td>3936x1682x1953</td>
<td>4377x1895x2000</td>
</tr>
<tr>
<td>Net weight (kg)</td>
<td>180</td>
<td>390</td>
<td>440</td>
<td>590</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>Total weight (kg)</td>
<td>580</td>
<td>1390</td>
<td>2440</td>
<td>4590</td>
<td>6890</td>
<td>9190</td>
</tr>
<tr>
<td>Overflow connection</td>
<td>DN 40</td>
<td>DN 50</td>
<td>DN 50</td>
<td>DN 65</td>
<td>DN 65</td>
<td>DN 80</td>
</tr>
<tr>
<td>Discharge connection</td>
<td>DN 25</td>
<td>DN 25</td>
<td>DN 32</td>
<td>DN 40</td>
<td>DN 40</td>
<td>DN 50</td>
</tr>
<tr>
<td>Water supply for redilution</td>
<td>1"</td>
<td>1"</td>
<td>1"</td>
<td>1 1/2"</td>
<td>11/2"</td>
<td>2"</td>
</tr>
</tbody>
</table>
Information on the system

<table>
<thead>
<tr>
<th>Ultromat ATF</th>
<th>400</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid concen‐</td>
<td>DN 15</td>
<td>DN 15</td>
<td>DN 15</td>
<td>DN 20</td>
<td>DN 20</td>
<td>DN 20</td>
</tr>
<tr>
<td>trate pipe‐</td>
<td>work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. water</td>
<td>1,500 l/h</td>
<td>1,500 l/h</td>
<td>3,000 l/h</td>
<td>6,000 l/h</td>
<td>8,000 l/h</td>
<td>12,000 l/h</td>
</tr>
<tr>
<td>supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elec. power</td>
<td>1.5 kW</td>
<td>2.6 kW</td>
<td>3.2 kW</td>
<td>5.0 kW</td>
<td>5.0 kW</td>
<td>9.5 kW</td>
</tr>
<tr>
<td>input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External fuse</td>
<td>25 A</td>
<td>25 A</td>
<td>25 A</td>
<td>25 A</td>
<td>25 A</td>
<td>40 A</td>
</tr>
<tr>
<td>Agitator 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0.25 kW</td>
<td>0.55 kW</td>
<td>0.75 kW</td>
<td>1.10 kW</td>
<td>1.10 kW</td>
<td>2.20 kW</td>
</tr>
<tr>
<td>Speed (50</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
</tr>
<tr>
<td>Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
</tr>
<tr>
<td>rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agitator for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chambers 2 +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>0.18 kW</td>
<td>0.55 kW</td>
<td>0.75 kW</td>
<td>1.10 kW</td>
<td>1.10 kW</td>
<td>1.10 kW</td>
</tr>
<tr>
<td>Speed (50</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
<td>750 rpm</td>
</tr>
<tr>
<td>Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
</tr>
<tr>
<td>rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feeder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>TGD 18.13</td>
<td>TGD 18.13</td>
<td>TGD 18.13</td>
<td>TGD 30.13</td>
<td>TGD 30.13</td>
<td>TGD 38.13</td>
</tr>
<tr>
<td>Maximum</td>
<td>9 kg/h</td>
<td>9 kg/h</td>
<td>9 kg/h</td>
<td>28 kg/h</td>
<td>28 kg/h</td>
<td>55 kg/h</td>
</tr>
<tr>
<td>metering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output at 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Design and function

Description of the Component Assemblies

5.1 Three-chamber reservoir

The PP reservoir is divided into three separate chambers, so that a sufficient maturing time for the polymer solution can be ensured. The division of the reservoir largely prevents the matured and freshly prepared solution from mixing and ensures continuous discharge.

The fill level of reservoir 3 is measured by a pressure sensor (4 to 20 mA). An additional sensor is optionally available for overflow protection.

Water pipework

The water pipework supplies the system with the required preparation water. The pressure reduced with strainer ensures that the correct operating pressure is limited and maintained. A solenoid valve opens and closes the water inlet. A manual shut-off valve also shuts off the supply of water for maintenance work.

5.2 Flush fitting

The flush fitting ensures that the polymer is intensively wetted with preparation water.

![Fig. 4: Flush fitting](image)

1. Shut-off valve
2. Pressure reducer
3. Solenoid valve
4. Flow meter float
5. Control valve
6. Y-Flush inlet

5.3 Dry Material Feeder (ATF only)

Please refer to the separate operating instructions entitled "Dry material feeder" in this documentation for detailed information about the design and function of the equipment. The heating for the metering pipe and the minimum fill level sensor for the dry material hopper are supplied as standard.
A loosening wheel is fitted directly about the feeder screw for the continuous discharge of the powdered polymer. A metering pipe heating unit also removes any penetrated moisture and thus prevents any caking of the powdered polymer.

5.4 Agitators

The Ultromat® is fitted with two electrical agitators as standard. A third agitator for chamber 3 can be supplied as an option. The electrical agitators ensure that the polymer solution is gently agitated. The electrical agitator 1 has two propellers. The agitators can start up suddenly as soon as they are supplied with mains power!

5.5 Power Socket for the Connection of a Conveyor (only ATF)

The Ultromat® has a power socket for the connection of a conveyor. The power socket is attached to the side of the terminal box and is secured electrically by a circuit breaker.

5.6 Terminal Box

The Ultromat® has a terminal box for connection to an external control. The control is provided by the operator.

5.7 Crane Lifting Lugs

A suitable hoisting can be attached to the four crane lifting lugs.

5.8 Ultromat® options

The following options are available for the Ultromat®.

5.8.1 Agitator for Chamber 3 (Agitator 3)

The Ultromat® is fitted with two electrical agitators as standard. A third agitator for chamber 3 can be supplied as an option.

5.8.2 Overflow Protection for the Ultromat®

The overflow protection signals that the Ultromat® is overflowing

5.8.3 Vibrator

The vibrator helps to prevent bridging in the dry material feeder so that the powdered polymer matures better.
5.8.4 Discharge pipework

The discharge pipework serves to combine the 3 reservoir outlets. This enables the Ultromat® to be emptied and its contents to be fed into a drain.
6 Assembly and Installation

The system is fully pre-assembled ex works. The cabling between the terminal box and the electrical power units is fully installed.

6.1 Assembly

WARNING!
High fill weight in the system
Possible consequence: Fatal or very serious injuries.
Ensure that the position of the system can bear the weight of the system when full.

Accessibility of the system
The system must be easily accessible at all times for operation, maintenance and filling.

Ambient conditions:
Permissible ambient temperature: 5 °C to 40 °C
The system may not be exposed to condensation or rain.
The system may not be exposed to direct sunlight.

6.2 Installation - Hydraulic

CAUTION!
Damage to the environment by the polymer solution is possible!
Observe the safety data sheet for the polymer and statutory regulations for disposal when draining the discharge lines and the overflow line!

NOTICE!
Prerequisites
- The preparation water must be of drinking water quality
- It must be free of solids and suspended particles
- Inlet water pressure: 3 bar - 5 bar
- The preparation water, overflow and discharge lines must have the correct dimensions

The overflow and discharge lines must be laid on a gradient and be operable without counter-pressure!

1. Connect the line for the preparation water to the water fitting.
2. Connect the feed pump to the discharge line.
3. Connect up the discharge lines and lead into a suitable drain.
4. Connect the overflow line to the overflow union and lead into a suitable drain.
WARNING!
Danger of electric shock!
Possible consequence: Fatal or very serious injuries
- The electrical installation may only be performed by a qualified electrician
- Always disconnect the system from the mains power supply and prevent it from being re-connected before undertaking any installation work in the electrical connections
- Ensure that the cross-section of the cable is adequate
- Ensure that the terminals are assigned correctly when connecting the units

CAUTION!
Danger of malfunction!
Material damage
Ensure that the motors are rotating in the right direction ... when connecting the agitators, powder feeder and motor pumps
7 Controller

The Ultromat® AF and ATF are not equipped with a controller. The controller is to be provided by the operator.

7.1 Terminal boxes AF/ATF

The following electrical devices are assigned to terminals in the terminal boxes:

Terminal boxes
- Agitator 1, 400 VAC
- Agitator 2, 400 VAC
- Agitator 3, 400 VAC
- Dry material feeder, 230/400 VAC, 0.18 kW
- Liquid concentrate pump, 230/400 VAC, 0.37 kW
- Separate fan liquid concentrate pump 230 VAC
- Heating dry material feeder, 230 VAC, 28 / 34 / 45 W
- Solenoid valve process water, 24 VDC, 8 W
- Pressure sensor for filling level sensor, 4 ... 20 mA, 0 ... 160 mbar
- Min-contact process water (flow monitor water)
- Overflow protection
8 Commissioning

8.1 Assembly, Preparatory Work

CAUTION!

Initial commissioning
Possible material damage

- It is essential that the mechanical and electrical connections are checked to ensure that they are correct prior to initial commissioning
- Ensure that the voltage, frequency and current type applied in the terminal box matches the data on the specification label
- Observe the handling and set-up information contained in the previous chapters when commissioning for the first time

Assembly

1. Preparation water, discharge and overflow lines must be fitted and checked for leakage and correct operation.
2. Provide adequate resources in the aforementioned quality.

8.2 Settings for Commissioning

Setting parameter for feed pipe heating

When delivered the timer relay in the terminal box is set to the following default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default values</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating switch-on time</td>
<td>5 s</td>
<td>1 - 10 s</td>
</tr>
<tr>
<td>Heating switch-off time</td>
<td>35 s</td>
<td>30 - 100 s</td>
</tr>
</tbody>
</table>

The parameters can be adapted to the process during commissioning.

8.3 Water Supply Setting

The water supply should be set to the following values:

<table>
<thead>
<tr>
<th>Type</th>
<th>Water supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultromat® 400</td>
<td>1500 l/h</td>
</tr>
<tr>
<td>Ultromat® 1000</td>
<td>1500 l/h</td>
</tr>
<tr>
<td>Ultromat® 2000</td>
<td>3,000 l/h</td>
</tr>
<tr>
<td>Ultromat® 4000</td>
<td>6,000 l/h</td>
</tr>
<tr>
<td>Ultromat® 6000</td>
<td>9,000 l/h</td>
</tr>
<tr>
<td>Ultromat® 8000</td>
<td>12,000 l/h</td>
</tr>
</tbody>
</table>
8.4 Calibrating the Dry Material Feeder

Required material:
- Weighing scales
- PE bag (capacity min. 500 g)

Calibration
1. Loosen the screw couplings to dismantle the flush fitting.
2. Hold the PE bag (capacity min. 500 g) under the metering pipe and fill for 1 minute.

 Weigh the volume of discharged powder. This is the volume of "Grammes per minute when the potentiometer is set at 100%".
3. Refit the flush fitting once the powder feeder has been calibrated.

8.5 Adjusting the Concentration

8.5.1 Adjusting the Concentration of the Polymer Solution in the Ultromat® AF / ATF

The metering rate for the dry material feeder or the concentrate pump can be calculated from the water supply setting and the concentration required. Example:

<table>
<thead>
<tr>
<th>Water supply</th>
<th>Concentration</th>
<th>Metering rate of dry material feeder / concentrate pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF / ATF 400, AF / ATF 1000</td>
<td>1500 l/h</td>
<td>0,1 %</td>
</tr>
<tr>
<td></td>
<td>1500 l/h</td>
<td>0,2 %</td>
</tr>
<tr>
<td></td>
<td>1500 l/h</td>
<td>0,3 %</td>
</tr>
<tr>
<td></td>
<td>1500 l/h</td>
<td>0,4 %</td>
</tr>
<tr>
<td></td>
<td>1500 l/h</td>
<td>0,5 %</td>
</tr>
<tr>
<td>AF / ATF 2000</td>
<td>3,000 l/h</td>
<td>0,1 %</td>
</tr>
<tr>
<td></td>
<td>3,000 l/h</td>
<td>0,2 %</td>
</tr>
<tr>
<td></td>
<td>3,000 l/h</td>
<td>0,3 %</td>
</tr>
<tr>
<td></td>
<td>3,000 l/h</td>
<td>0,4 %</td>
</tr>
<tr>
<td></td>
<td>3,000 l/h</td>
<td>0,5 %</td>
</tr>
<tr>
<td>AF / ATF 4000</td>
<td>6,000 l/h</td>
<td>0,1 %</td>
</tr>
<tr>
<td></td>
<td>6,000 l/h</td>
<td>0,2 %</td>
</tr>
<tr>
<td></td>
<td>6,000 l/h</td>
<td>0,3 %</td>
</tr>
<tr>
<td></td>
<td>6,000 l/h</td>
<td>0,4 %</td>
</tr>
<tr>
<td></td>
<td>6,000 l/h</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Water supply</td>
<td>Concentration</td>
<td>Metering rate of dry material feeder / concentrate pump</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>AF / ATF 6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000 l/h</td>
<td>0,1 %</td>
<td>9.0 kg/h</td>
</tr>
<tr>
<td>9,000 l/h</td>
<td>0,2 %</td>
<td>18.0 kg/h</td>
</tr>
<tr>
<td>9,000 l/h</td>
<td>0,3 %</td>
<td>27.0 kg/h</td>
</tr>
<tr>
<td>9,000 l/h</td>
<td>0,4 %</td>
<td>36.0 kg/h</td>
</tr>
<tr>
<td>9,000 l/h</td>
<td>0,5 %</td>
<td>45.0 kg/h</td>
</tr>
<tr>
<td>AF / ATF 8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000 l/h</td>
<td>0,1 %</td>
<td>12.0 kg/h</td>
</tr>
<tr>
<td>12,000 l/h</td>
<td>0,2 %</td>
<td>24.0 kg/h</td>
</tr>
<tr>
<td>12,000 l/h</td>
<td>0,3 %</td>
<td>36.0 kg/h</td>
</tr>
<tr>
<td>12,000 l/h</td>
<td>0,4 %</td>
<td>48.0 kg/h</td>
</tr>
<tr>
<td>12,000 l/h</td>
<td>0,5 %</td>
<td>60.0 kg/h</td>
</tr>
</tbody>
</table>

8.6 Adjusting the Capacitive Sensor

The capacitive sensor for reporting a shortage of powder in the dry material feeder must be checked and possibly adjusted.

The sensor has a yellow LED at its cable end to indicate the switching state and also a sunken adjustment screw to adjust its sensitivity.

The sensor is checked and adjusted in 2 steps:

1. The yellow LED on the sensor is not illuminated - the setting is correct.

2. The yellow LED on the sensor is illuminated:
 - Reduce the sensitivity on the adjustment screw (turn anti-clockwise) until the LED goes out.

With an empty dry material feeder

1. The yellow LED on the sensor is not illuminated - the setting is correct.

2. The yellow LED on the sensor is illuminated:
 - Reduce the sensitivity on the adjustment screw (turn anti-clockwise) until the LED goes out.

With a filled dry material feeder

1. The yellow LED on the sensor is not illuminated - the setting is correct.

2. The yellow LED on the sensor is not illuminated:
 - Increase the sensitivity on the adjustment screw (turn clockwise) until the LED is illuminated.

8.7 Operation of the System

CAUTION!

Large volumes of water of polymer solution can escape from the system!
- Ensure that the discharge values are closed before starting the preparation process!
CAUTION!
Monitor the operation of the system in the start-up phase!
- Monitor in particular the correct switching operation of the level sensor when they first reach their respective switching points!

Prerequisites:

1. Correct and proper assembly and installation of the system has been checked.
2. The discharge valves are closed.
3. All the operating parameters have been set.
4. All of the necessary equipment has been calibrated.
5. Start up the system
 ⇨ the system starts up and begins the automatic preparation process.
9 Operation of the System

9.1 Prerequisites for Correct and Proper Operation

NOTICE!
Instructed personnel
– The system may only be operated by instructed personnel!

Prerequisites: Correct setting of the operating parameters.

9.2 Feeding the Dry Material Feeder with Powdered Polymer (ATF)

CAUTION!
Danger of slipping!
Mixtures of polymer and water are slippery!
– Ensure that you have a secure foothold when filling the dry material feeder
– Immediately remove any spilled powdered polymer or leaked polymer solution

If the dry material feeder is not automatically filled, the supply of powdered polymer has to be continuously checked and refilled in time. This can be done while the system is operational.

9.3 Behaviour When Switching on Mains Power and in the Event of Mains Power Failure

Behaviour when switching on mains power and in the event of mains power failure is dependent on the external control and is the responsibility of the operator.

9.4 Decommissioning

For more than two days

1. Completely empty the dry material feeder and/or liquid concentrate feed.
2. Empty the reservoir through the connections on the individual chambers provided for this.
3. Carefully flush the reservoirs with water.
4. In addition, rinse the flushing fitting.
5. Carefully flush the line between the reservoir and the feed pump.
9.5 Disposal

NOTICE!

Regulations

- Please observe the currently applicable local regulations (specifically with regard to electronic waste)
- Please also read the operating instructions for the other equipment (dry material feeder, pumps ...)

For Germany: The cleaned used parts can be disposed of at municipal waste collection points.
10 Incorrect Operation of the System

- The incorrect position of the discharge valves can result in malfunction.
- The incorrect position of the shut-off valves in the water supply line can result in malfunction.
- Unauthorised persons must be prevented from entering or changing operating parameters.
- The maximum viscosity of 1500 mPas may not be exceeded when setting the concentration on the external control.
- The system will malfunction if the polymer supply is not refilled.
11 Troubleshooting

11.1 Unspecified Malfunctions

Should a problem occur, which is not included in this list or should a listed fault not be remedied by the suggested troubleshooting measures, please contact ProMinent Customer Services without delay.

11.2 Sensors

It should first be considered with every fault analysis that a capacitive proximity sensor may possibly be erroneously signalling a fault.
12 Maintenance

The following components have to be maintained regularly. The intervals should be based on operating conditions.

12.1 Dry Material Feeder

- Check the dry material feeder regularly during operation to ensure that it is working correctly
- Check whether the powdered polymer is being metered correctly

12.2 Cleaning the Screen Insert in the Pressure Reducer

Clean the screen insert at the latest when 2/3 of the throughput surface of the screen insert is dirty.

- Manually close the shut-off valve upstream of the pressure reducer
- Please refer to the manufacturer's instructions for further steps

12.3 Dismantling the Cover of an Inspection Opening

CAUTION!

Danger of sudden start-up!
Slight or minor injuries
- The agitators and propeller may start up suddenly

The system must only be operated in principle when the inspection openings are tightly screwed.
The covers may only be removed temporarily.
After the inspection work, replace all covers and screw closed!

12.4 Cleaning the Surface of the Ultromat®

CAUTION!

Material damage
Do not use cleaning agents containing solvents.

Clean the surfaces of the Ultromat® if needed, as a slippery film can form on them over time.
Spare parts and accessories can be purchased from our Customer Service department.
Appendix

MSR diagram: Ultromat RI flow diagram® AF/ATF with pressure sensor

Fig. 5: Ultromat RI flow diagram® AF
Fig. 6: Ultromat RI flow diagram® ATF
15 EC Declaration of Conformity

EC Declaration of Conformity

We hereby declare, ProMinent Dosiertechnik GmbH
Im Schuhmachergewann 5 - 11
D - 69123 Heidelberg

that the following designated product complies with the pertinent fundamental safety and health requirements of the EC Directive in terms of its design and construction and in terms of the version marketed by us. This declaration loses its validity in the event of a modification to the product not agreed with us.

Description of the product: Polyelectrolyte preparation system, Ultromat

Product type: ULTa..., AF, AT, ATF, AFP, ATP, ATFP, AFD, ATD, ATFD ATR, AFK, MT

Serial no.: refer to nameplate on the device

Pertinent EC Directives:

EC Machinery Directive (2006/42/EC)
EC Low Voltage Directive (2006/95/EC)

Applied harmonised standards in particular:

EN ISO 12100-1, EN ISO 12100-2, EN 809,
EN 60335-1, EN 60335-2-41, EN 50106, EN 55014,
EN 61000-3-3, EN 61000-4-2/3/4/5/6/11, EN 61000-6-1/2

technical documents have been compiled by:

Norbert Berger
Im Schuhmachergewann 5-11
DE-69123 Heidelberg

Date / Manufacturer - Signature : 04.01.2010

Details of the signatory: Joachim Schall, Head of Research and Development

Fig. 7: EC Declaration of Conformity
16 Commissioning report

Commissioning report Ultromat® AF/
ATF

Ultromat® Type: AF 400, AF 1 000, AF 2 000, AF 4 000, AF 6 000,
AF 8 000

Ultromat® Type: ATF 400, ATF 1 000, ATF 2 000, ATF 4 000, ATF
6 000, ATF 8 000

Project number (on type plate):

Calibration settings:

Powdered polymer:
Calibrated metering capacity g/min
Water supply l/h

Liquid polymer:
Calibrated metering capacity g/min
Water supply l/h

Settings for Commissioning
Commissioning parameters
Default setting
Setting
Setting powder mode
Heating
Switch-on time 5 s
Heating switch-off time 35 s
Powdered polymer trade name:
Supplier:
Liquid polymer trade name:
Supplier
Customer:
Date:
Installation place:
Index

17 Index

1, 2, 3 28
1500 mPas... 28
A
Accessibility... 19
Accessories... 31
Agitator... 21
Agitators.. 17
Application... 13
Assembly.. 19
C
Calibration... 23
Capacitive sensor................................. 24
Commissioning.................................... 22
Crane Lifting Lugs............................... 17
D
Decommissioning................................. 26
Discharge pipework............................... 18
Disposal... 27
Drinking water quality......................... 19
Dry material feeder......................... 17
F
Feeder screw....................................... 17
Feed pipe heating............................... 22
flow monitor water............................. 21
Flush fitting....................................... 16
H
Heating dry material feeder.................. 21
I
Incorrect operation............................. 28
Inspection opening............................. 30
Installation - Electrical....................... 20
Installation - Hydraulic....................... 19
L
Loosening wheel................................. 17
M
Min-contact process water................... 21
mPas.. 13
N
Nominal discharge capacity................. 13
O
Operation.. 26
Options... 17
P
Power socket...................................... 17
PP Reservoir..................................... 16
Propellers.. 10, 29
S
Safety information.............................. 7
Screen insert..................................... 30
Sensor... 24
Sensors... 29
Separate fan liquid concentrate pump..... 21
Spare parts.. 31
Storage.. 12
Surfaces.. 30
System dimensions......................... 13
T
Terminal box..................................... 17
Terminal boxes.................................. 21
Three-chamber reservoir................... 16
Transport... 12
U
Ultramat® AF/ATF front view............... 5
Ultramat Safety Information............... 11
Unspecified malfunctions................... 29
Users’ Qualifications......................... 9
W
Warning labels................................. 10
Water supply................................. 22