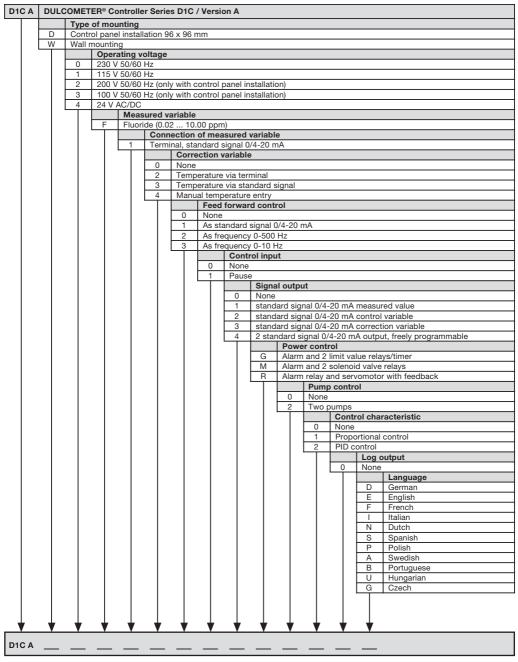
Operating Instructions

DULCOMETER® D1C

Part 2: Adjustment and Operation, Measured Variable Fluoride

D1C2-001 D


Type W

D1C A

Please enter the identity code of your device here!

Please completely read through operating instructions! · Do not discard! The warranty shall be invalidated by damage caused by operating errors!

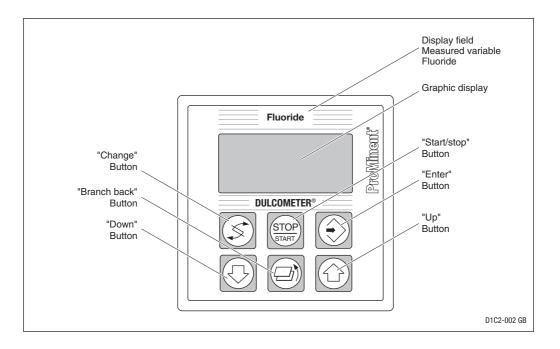
1 Device Identification / Identity Code

2 General User Information

		Page
1	Device Identification / Identity Code	2
2	General User Information	3
3	Device Overview / Controls	4
4	Functional Description	5
5	Display Symbols	6
6	Operation	7
7	Restricted Operating Menu	8
	General Layout	8
	Description	9
8	Complete Operating Menu	13
	Overview	13
	Description	14
9	Faults / Notes / Troubleshooting	27

General User Information

These operating instructions describe the technical data and function of the series DULCOMETER® D1C controller, provide detailed safety information and are divided into clear steps.


IMPORTANT

- Please observe the parts of these operating instructions applicable to your particular version! This is indicated in the Section "Device Identification / Identity Code".
- Correct measuring and metering is only possible in the case of impeccable operation of the sensor. The sensor has to be calibrated / checked regularly!

NOTE

A form "Documentation of controller settings Type D1C" is available under www.prominent.com/documentation_D1C for the purpose of documenting the controller settings.

3 Device Overview / Controls

CHANGE button

To change over within a menu level and to change from one variable to another within a menu point.

START/STOP button

Start/stop of control and metering function.

ENTER button

To accept, confirm or save a displayed value or status. For alarm acknowledgement.

UP button

To increase a displayed numerical value and to change variables (flashing display)

BRANCH BACK button

Back to permanent display or to start of relevant setting menu.

DOWN button

To decrease a displayed numerical value and to change variables (flashing display).

4 Functional Description

NOTE

Please refer to the description of the complete operating menu in Section 8 for a detailed description of the individual characteristics of the DULCOMETER® D1C controller!

4.1 Operating Menu

The DULCOMETER® D1C controller permits settings to be made in two different menus. All values are preset and can be changed in the **complete operating menu**.

The controller is delivered with a **restricted operating menu** so that the D1C controller can be used effectively in many applications from the very onset. If adaptations prove to be necessary, all relevant parameters can then be accessed by switching over to the complete operating menu (see "General settings").

4.2 Access Code

Access to the setting menu can be prevented by setting up an access code. The D1C controller is supplied with the access code 5000 which permits free access to the setting menu. The calibration menu remains freely accessible even if access to the setting menu is blocked by the code.

4.3 Control

The D1C can operate as a proportional controller or as a PID controller - dependent on the device version (see identity code) and the setting.

The controlled variable is recalculated once a second. Control procedures which require rapid correction of setpoint deviations (less than approx. 30 seconds) cannot be processed with this controller. The cycle times must be taken into consideration when activating solenoid valves (pulse length) in the same way as their running times when activating servomotors (3-point).

Via the control input pause, the control function (selection of controlled variable) can be switched off. The calculation of the controlled variable starts again after cessation of "pause".

4.4 Feed Forward Control

The D1C controller can process a signal of a feed forward control. Depending on the device version (see identity code) and the setting, this signal can be obtained in any form of a 0–20 mA or 4–20 mA signal or as a digital contact signal with the maximum frequencies 10 Hz or 500 Hz.

During start-up, the zero point has to be checked. The multiplicative feed forward control is not designed for switching off permanently the actuating variable (signal \approx 0).

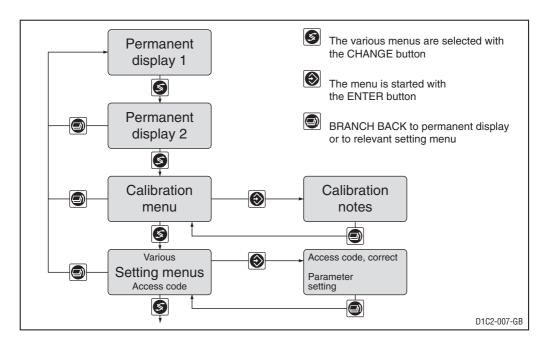
This signal can be used, for example, for flow-proportional metering (multiplicative effect) or feed forward-dependent basic load metering (additive effect). The result of control variable calculation from the proportional or PID control is multiplied by or added to the feed forward signal. A multiplicative feed forward variable at the level of the set rated value carries over the calculated control variable unchanged into the controlled variable:

Controlled variable = Feed forward variable/rated value x calculated control variable

An additive feed forward variable at the level of the rated value results in maximum controlled variable:

Controlled variable (max. 100 %) = Feed forward variable/rated value x max. controlled variable + calculated control variable

4.5 Error Messages

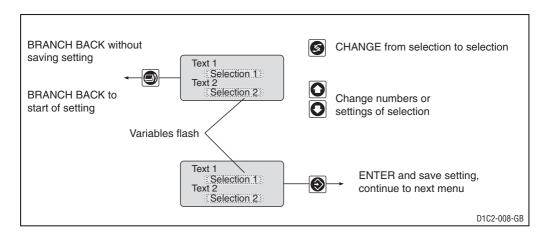

Error messages and information are indicated in the bottom line in the permanent display 1. Errors to be acknowledged (acknowledgement switches off the alarm relay) are indicated by the "E". Errors/notes which still apply after acknowledgement are indicated alternately. During correction variable processing (temperature for correction of fluoride value), the value is indicated in the same line as the error/note. Faults which are rectified of their own accord due to changed operating situations are removed from the permanent display without the need for acknowledgement.

5 Display Symbols

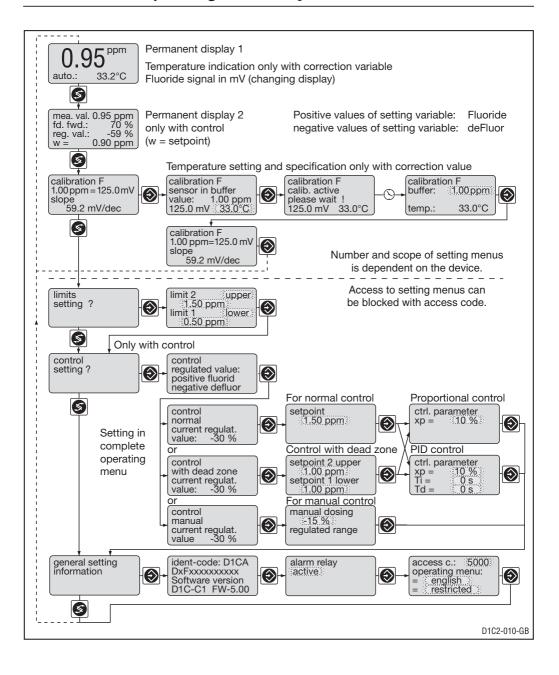
The display of the DULCOMETER $\hskip-2pt^{\!\otimes}$ D1C controller uses the following symbols:

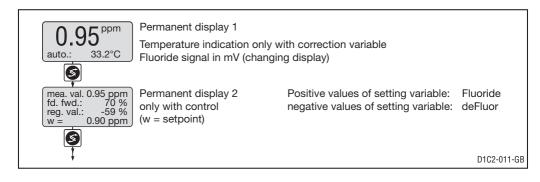
Description	Comment	Symbol
Limit value transgression Relay 1, upper	Symbol left	1
Relay 1, lower	Symbol left	ļ.
Relay 2, upper	Symbol right	1
Relay 2, lower	Symbol right	ŀ
Metering pump 1 (Fluoride) Control off	Symbol left	
Control on	Symbol left	
Metering pump 2 (deFluor) Control off	Symbol right	
Controll on	Symbol right	
Solenoid valve 1 (Fluoride) Controll off	Symbol left	4
Controll on	Symbol left	Δ
Solenoid valve 2 (deFluor) Controll off	Symbol right	L
Control on	Symbol right	
Servomotor Control, open relay		1 L
Control, close relay		△ ▶
Without control		4
Position feedback	The bar increases from left to right during opening	
Stop button pressed		0
Manual metering		M
Fault		3

6 Operation


IMPORTANT

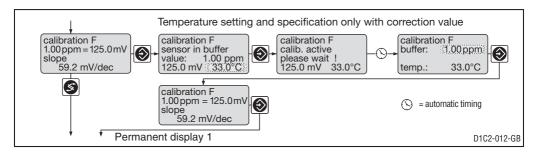
Access to the setting menus can be barred with the access code!


The number and scope of setting menus is dependent on the device version!


If the access code is selected correctly in a setting menu, then the following setting menus are also accessible!

If within a period of 10 minutes no button is pushed, the unit automatically branches back from the calibrating menu or a setting menu to the permanent display 1.

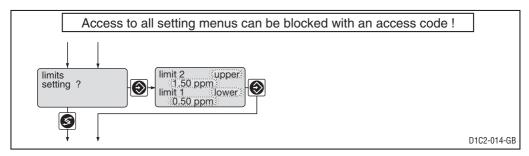
7 Restricted Operating Menu / Layout



Calibrating the Fluoride sensor

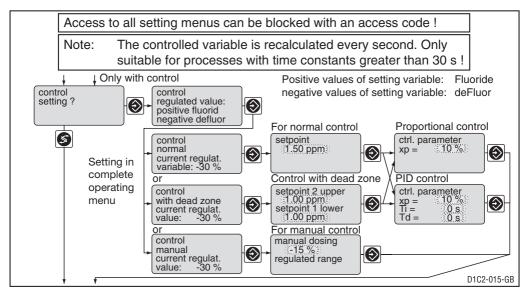
Immerse the fluoride sensor (and the reference electrode if applicable) in the calibration buffer. Once the mV signal which is visible in the changing display is stable (fluctuation < 0.05 mV/min), go to settings menu "Calibration F" and press the "Enter" key. The flashing temperature display in the following menu must be the temperature at which calibration is carried out. Press the "Enter" key again to start calibration.

When the next menu option appears, the most recently calibrated fluoride concentration is suggested in the "Buffer" menu option (limits 0.25 – 1.25 ppm); now enter the fluoride content of the calibration buffer (arrow keys) and confirm 2x. The calibration is now complete.



		Possible value	es		
	Initial value	Increment	Lower value	Upper value	Remarks
Calibration temperature	Measured temperature value	0.1 °C	0 °C	100 °C	
Fluoride concentration of the buffer					Error message if the concentration difference is
(measuring range 10 ppm)	Last calibration value entered	0.01 ppm	0.25 ppm	1.25 ppm	too small (<0.5 ppm F ⁻)
(measuring range 99.99 ppm)	Last calibration value entered	0.01 ppm	0.75 ppm	12.50 ppm	

Error message	Condition	Effect
Potential low*	< 90.0 mV	Back to permanent display: basic load metering
Potential high*	> 150.0 mV	п
Buffer missing		п
Measured value fluoride unstable	$\Delta U > 0.3 \text{ mV}$ after t > 600 s	п

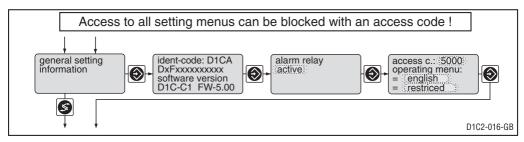

^{*}For the measuring range 0...99.99 ppm, the plausibility statement is deactivated!

Limits

			Possible values			
		Initial value	Increment	Lower value	Upper value	Remarks
Type of limit t gression	rans- Limit 1: Limit 2:	lower upper	upper lower off*			Limit transgression for exceeding or dropping below limit
Limit value	Limit 1: Limit 2:	0.50 ppm 1.50 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	11.00 ppm 11.00 ppm	*only with limit value relay

Control

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Setpoint measuring range: 10 ppm measuring range: 99.99 ppm	1.00 ppm 10.00 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	10.00 ppm 99.99 ppm	2 setpoints necessary for control with dead zone. Setpoint 1 > setpoint 2
Control parameter xp	10 %	1 %	1 %	500 %	xp referred to 10.00 ppm
Control parameter Ti	off	1 s	1 s	9999 s	Function off = 0 s
Control parameter Td	off	1 s	1 s	2500 s	Function off = 0 s
Manual metering	0 %	1 %	-100 %	+100 %	

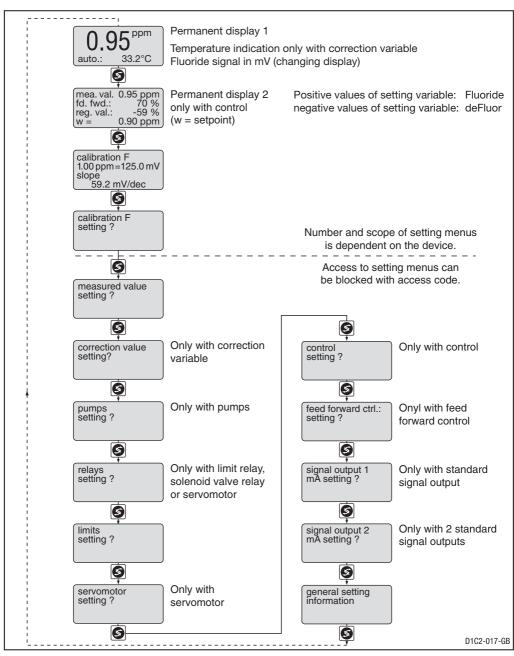

Abbreviation for control variables:

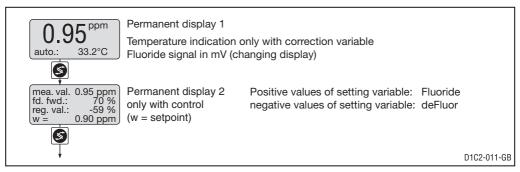
 $x_p = 100$ %/Kp (inverse proportional co-efficient)

 $T_i^p = I$ controller integration time [s]

T_d = D controller differential time [s]

General Settings

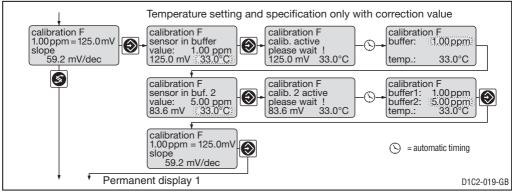

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Alarm relay	active	active not active			
Access code	5000	1	1	9999	
Language	as per identity code	as per identity code			
Operating menu	restricted	restricted complete			


Access Code

Access to the setting menu can be prevented by setting up an access code. The DULCOMETER® D1C controller is supplied with the access code 5000 which permits free access to the setting menu. The calibration menu remains freely accessible even if access to the setting menu is blocked by the code.

8 Complete Operating Menu / Overview

All parameters of the controller can be set in the complete operating menu (access see previous page). The following overview shows the settings which can be selected:

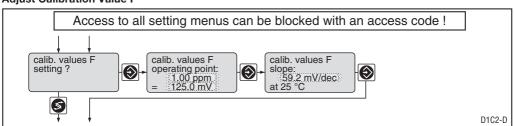

Calibrating the Fluoride sensor

Immerse the fluoride sensor (and the reference electrode if applicable) in calibration buffer 1. Once the mV signal which is visible in the changing display is stable (fluctuation < 0.05 mV/min), go to setting menu "Calibration F" and press the "Enter" key. The flashing temperature display in the following menu must be the temperature at which calibration is carried out. Press the "Enter" key again to start calibration for the first concentration value.

When the next menu option appears, the last calibrated fluoride concentration will be suggested in the "Buffer 1" menu (limits 0.25 - 1.25 ppm); enter the fluoride content of the calibration buffer (arrow keys) and confirm

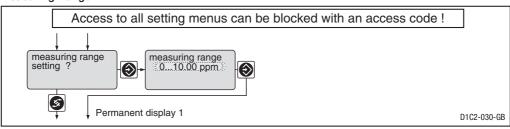
Immerse the fluoride sensor (and the reference electrode if applicable) in calibration buffer 2. Once the measurement signal is stable (fluctuation < 0.05 mV/min), press the "Enter" key.

When the next menu option appears, the last calibrated fluoride concentration will be suggested in the "Buffer 2" menu (limits 1.75 - 10.00 ppm); enter the fluoride content of the calibration buffer 2 (arrow keys) and confirm 2x. This concludes the calibration.



		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Calibration temperature	Measured temperature value	0.1 °C	0 °C	100 °C	
Fluoride concentration	Last calibration				Error message if the
of the buffer 1 (measuring range 10 ppm)	value entered	0.01 ppm	0.25 ppm	1.25 ppm	concentration difference
of the buffer 2 (measuring range 10 ppm)		0.01 ppm	1.75 ppm	10.00 ppm	is too small (<0.5 ppm F ⁻)
of the buffer 1 (measuring range 99.99 ppm)		0.01 ppm	0.75 ppm	12.50 ppm	
of the buffer 2 (measuring range 99.99 ppm)		0.01 ppm	17.50 ppm	99.99 ppm	

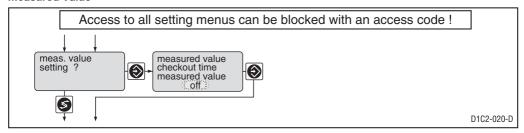
Error message	Condition	Effect
Potential low*	< 90.0 mV	Back to permanent display; basic load metering
Potential high*	> 150.0 mV	п
Buffer 1 missing		п
Slope low	< 45 mV/dec	п
Slope high	> 65 mV/dec	п
Buffer 2 missing		п
Measured value fluoride unstable	$\Delta U > 0.3 \text{ mV}$ after t > 600 s	п


^{*}For the measuring range 0...99.99 ppm, the plausibility statement is deactivated!

Adjust Calibration Value F

		Possible values		
	Initial value	Increment	Lower value	Upper value
Operating point at "1 ppm"	125.0 mV	0.1 mV	0.0 mV	200.0 mV
Slope	59.2 mV/dec	0.1 mV/dec	45.0 mV/dec	65.0 mV/dec

Measuring Range

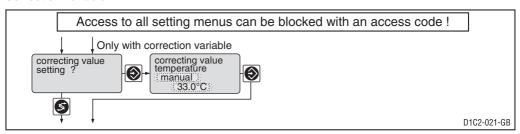

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Measuring range	010 ppm	010 ppm 099.99 ppm			

IMPORTANT

When changing the range assignment, the fluoride sensor has to be calibrated again and the settings in all menus must be verified!

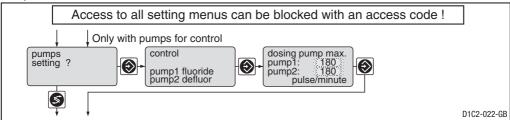
Measured Value

Measured value control period

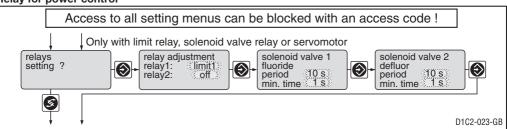

IMPORTANT

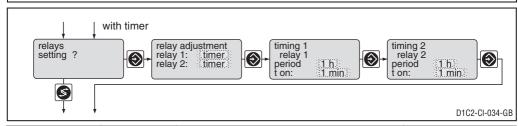
This function may not be activated for applications in which it can be assumed that the measured value will not change.

This function tests whether the measured value changes from that of the sensor (at the measured value input) within the "Measured value control period". It is assumed that it will do so for an intact sensor. If the measuring value does not change during this control time, the DULCOMETER® D1C sets the control variable to "0" and the alarm relay drops out. The LCD display shows e.g. the message "check F sensor".


		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Checkout time	off	1 s	1 s	9999 s	Constant measurement signal results in message and alarm. Function off = 0 s

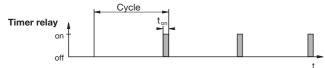
Correction Variable


		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Type of temperature compensation	as per identity code	manual automatic off			Changeover only if specified in identity code = automatic
Manual temperature compensation	25 °C	0.1 °C	0°C	100 °C	


Pumps

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Max. stroke/minute of pumps 1 and 2	180	1	1	500	off = 1 stroke/min

Relay for power control



		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Relay adjustment	as per identity code				
Relay 1		Solenoid valve 1 Limit value 1* Actuator 1 Timer 1 Servomotor off			* In the case of "Limit value" - relays remain active even in the event of an error. only with servomotor
Relay 2		Solenoid valve 2 Limit value 2* Actuator 2 Timer 2 off			

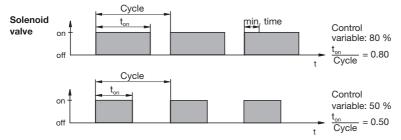
		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Period	10 s	1 s	10 s	9999 s	for solenoid valve
min. time	1 s	1 s	1 s	period/2	for solenoid valve
					Set here the smallest permitted operating factor of the connected device.
Period	off	1 h	1 h / off	240 h	for timer
t on	1 min	1 min	1 min	240 min	for timer

NOTE

The limit value relay can be defined in such a way as to respond as a control element, i.e. if a limit value relay closes a circuit, it opens when a pause contact is activated and/or for a subsequent delay period t_a (if t_a is set to > 0 min in "General settings").

<u>^!\</u>

IMPORTANT

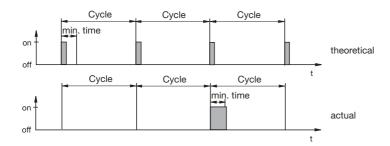

The timer will reset in the event of a power failure.

At the end of the (timer) cycle time the DULCOMETER® D1C closes the assigned relay for the duration of "t on" (timer). "Pause" interrupts the timer.

When the clock is shown in the LC display the timer can be reset to the start of the cycle at precisely this point using the enter button.

The % figure in the LC display indicates the progress of the current cycle.

Timer relays may be used, e.g. for shock metering or sensor cleaning.

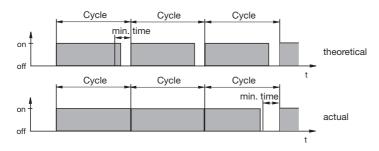


The switching time of the DULCOMETER® D1C (solenoid valve) depends on the actuating variable and the "min. time" (smallest permitted operating factor of the connected device).

The actuating variable determines the ratio t_{or}/cycle and thus the switching times (see fig. above).

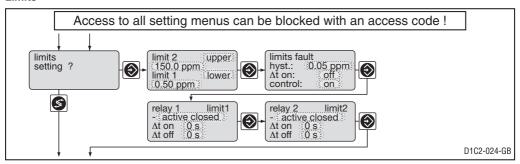
The "min. time" influences the switching times in two situations:

a) theoretical switching time < min. time:



The DULCOMETER® D1C does not switch for a certain number of cycles until the sum of the theoretical switching times exceeds the "min. time". Then the DULCOMETER® D1C switches for the duration of this total time.

b) theoretical switching time > (cycle - min. time)


and

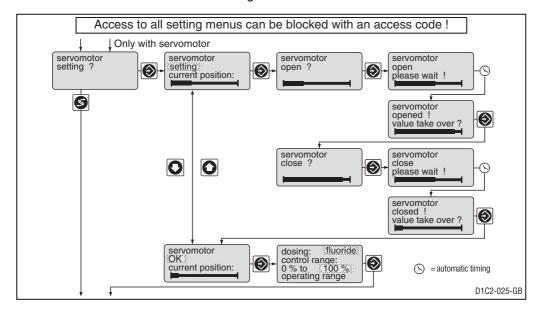
calculated switching time < cycle

The DULCOMETER® D1C does not deactivate for a certain number of cycles until the differences between cycle and theoretical switching time exceed the "min. time".

Limits

			Possible values			
		Initial value	Increment	Lower value	Upper value	Remarks
Type of limit trans gression	S- Limit 1: Limit 2:	lower upper	upper lower off*			Limit transgression when exceeding or dropping below value *only with limit value relay
Limit value	Limit 1: Limit 2:	0.50 ppm 1.50 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	11.00 ppm 11.00 ppm	Measuring range: 10 ppm Measuring range: 10 ppm
	Limit 1: Limit 2:	5.00 ppm 15.00 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	99.99 ppm 99.99 ppm	Measuring range: 99.99 ppm Measuring range: 99.99 ppm
Hysteresis limits		0.05 ppm 0.50 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	11.00 ppm 99.99 ppm	Measuring range: 99.99 ppm Measuring range: 99.99 ppm
						Effective in direction of cancelling limit trans- gression.
Checkout time lim	nits	off	1 s	1 s	9999 s	Results in message and alarm. off = 1 s: Function switched off, no message, no alarm
Control		on	on off			
Switching direction Limit value 1, Lim		active closed	active closed active open			Acts as N/O Acts as N/C
Switch-on delay /	∆t on	0 s	1 s	0 s	9999 s	
Switch-off delay /	∆t off	0 s	1 s	0 s	9999 s	

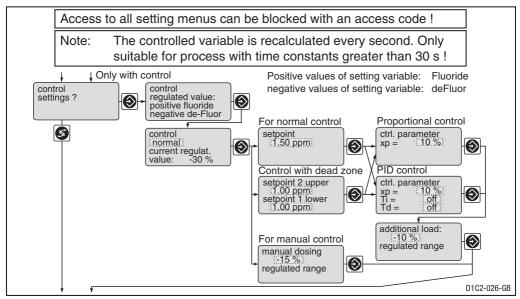
If the limit is exceeded for longer than the "delay time - limit values" an error message is given, which must be acknowledged, and the alarm relay circuit is broken. If "control" is also set to "off" the control process stops.


Servomotor

The **operating range** is defined by the total resistance range of the feedback potentiometer. The maximum limit of the range actually used is set by defining the **control range**.

IMPORTANT

- Activation of the servomotor must be carried out with the same meticulous care as taken when calibrating a measuring sensor.
- To ensure correct operation, the activation time of the actuator used should not be less than 25 seconds for the control range from 0...100 %!

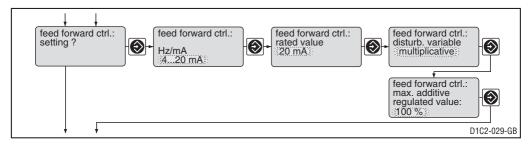


		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Servomotor	Setting	Setting OK off			
Control direction	Fluoride	Fluoride deFluor			
Control range	100 %	1 %	10 %	100 %	in % of operating range

NOTE

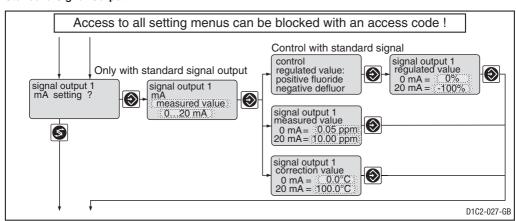
- When the wide bar is as right as it will go the stroke adjustment motor is fully open.
- The permanent display shows to what degree the motor has opened in % (the greater the
 percentage, the farther open the stroke adjustment motor.)

Control

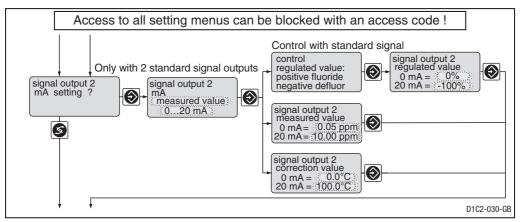

		Possible values	i	i	
	Initial value	Increment	Lower value	Upper value	Remarks
Control	normal	normal with dead zone manual			When controlling with dead zone, the feed forward control is not used for measured values within the dead zone.
Setpoint measuring range: 10 ppm measuring range: 99.99 ppm	1.00 ppm 10.00 ppm	0.01 ppm 0.01 ppm	0.00 ppm 0.00 ppm	10.00 ppm 99.99 ppm	2 setpoints necessary for control with dead zone. Setpoint 2 > setpoint 1
Control parameter xp	10 %	1 %	1 %	500 %	xp referred to 10.00 ppm
Control parameter Ti	off	1 s	1 s	9999 s	Function off = 0 s
Control parameter Td	off	1 s	1 s	2500 s	Function off = 0 s
Additional load	0 %	1 %	-100 %	+100 %	
Manual metering	0 %	1 %	-100 %	+100 %	

Abbreviation for control variables:

 $x_0 = 100 \%/Kp$ (inverse proportional co-efficient)

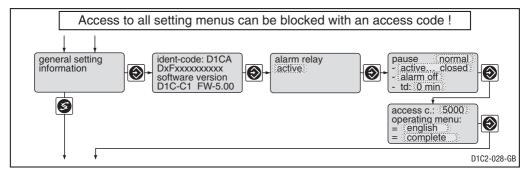

 $T_i^p = I$ controller integration time [s] $T_d = D$ controller differential time [s]

Feed Forward Control



		Possible value	es		
	Initial value	Increment	Lower value	Upper value	Remarks
Feed forward control (Flow)	as per identity code Standard signal 4–20 mA	None 10 Hz 500 Hz 020 mA 420 mA			Signal processing: Signal <0,02 Hz = No flow Signal <0,2 Hz = No flow Signal <0,2 Hz = No flow Signal <0,2 mA = No flow Signal <4,2 mA = No flow
Feed forward control rated value	10 Hz 500 Hz 20 mA	0.01 Hz 1 Hz 0.1 mA	0.1 Hz 5 Hz 0/4 mA	10 Hz 500 Hz 20 mA	Depended on signal type. Maximum limitation of range used.
Feed forward control Disturb. variable	multiplicative	multiplicative additive			
Disturbance value additive set value	100 %	1 %	-500 %	+500 %	only with add. feed forward control

Standard Signal Output 1



Standard Signal Output 2

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Variable allocation	as per identity code	Measured value Controlled variable Correction value			If control applicable only with correction variable
Output range	020 mA	020 mA 420 mA 3.6/4-20 mA			Reduction to 3.6 mA when alarm relay switches (not limit value violation)
Range measured value					
Measuring range: 10 ppm	02.00 ppm	0.01 ppm	0.00 ppm	11.00 ppm	Minimum difference 1.0 ppm
Measuring range: 99.99 ppm	020 ppm	0.01 ppm	0.00 ppm	99.99 ppm	
Range controlled variable	0 %100 %	1 %	-100 %	+100 %	Minimum range 1 %
Range correction value	0100 °C	0.1 °C	0 °C	100 °C	Minimum range 1 °C

General Setting

		Possible values			
	Initial value	Increment	Lower value	Upper value	Remarks
Alarm relay	active	active not active			
Pause	normal	normal Hold			
Control input pause	active closed	active closed active open			Reacts like a make contact Reacts like a break contact
Alarm Pause	alarm off	alarm off alarm on			Alarm relay can be activated through pause contact.
td	0 min	1 min	0 min	60 min	
Access code	5000	1	1	9999	
Language	as per identity code	as per identity code			
Operating menu	complete	restricted complete			

Pause Normal

If the pause switch is off, the DULCOMETER® D1C sets the operating outputs to "0" for as long as the pause switch is off or for a set time-delay t_d (if t_d is set to > 0 min). Whilst the pause switch is off, the D1C establishes the P-proportion in the background.

With PID-control (Identity code characteristics "control characteristic" = 2): the I-proportion is stored when the pause is switched off (I-proportion then usually only present if Ti > 0 has been selected in the "Control setting?" setting menu).

Exception: the standard signal outputs mA for the measured value or correction value are not affected by the pause.

After pause is activated the operating outputs remain at "0" for the length of the time-delay t_a . The time-delay t_a must be set up in such a way that in this time e.g. sample water (process-specific current concentration) flows to the sensor.

With PID-control (Identity code characteristics "control characteristic" = 2): The control variable output resulting from the pause and the expiry of the time-delay t_d is reconciled jointly with the current P-component and (if Ti is set > 0) with the stored I-component.

Pause Hold

If the pause switch is off, the DULCOMETER® D1C freezes the operating output at the most recent value for as long as the pause switch is off or for a set time-delay t_a (if t_a is set to > 0 min). Whilst the pause switch is off, the D1C establishes the P-proportion in the background.

With PID-control (Identity code characteristics "control characteristic" = 2):

Even the mA standard signal outputs for measured value or correction value are frozen.

After pause is activated the operating outputs remain frozen for the length of the time delay $t_{\rm d}$. The time delay $t_{\rm d}$ must be set up in such a way that in this time e.g. sample water (process-specific current concentration) flows to the sensor.

With PID-control (Identity code characteristics "control characteristic" = 2): The control variable output resulting from the pause and the expiry of the time-delay t_d is reconciled jointly with the current P-proportionand (if Ti is set > 0) with the newly established I-proportion.

Access Code

Access to the setting menu can be prevented by setting up an access code. The DULCOMETER® D1C controller is supplied with the access code 5000 which permits free access to the setting menu. The calibration menu remains freely accessible even if access to the setting menu is blocked by the code.

9 Faults / Notes / Troubleshooting

Fault	Error text	Symbol	Effect On metering On Control	ect On Control	Alarm with ack- nowledgement	Remarks	Remedy
Measured value - Checkout time	Check F sensor	٤	Basic load	Stop	Yes	Function defeatable	Check function of sensor, exceed checkout time
Range infringement - Value below minimum - Value above maximum	Check F input Fluor. input Fluor. input	٣	Basic load	Stop	Yes	at < 3.8 mA at > 21 mA	Check sensor, transducer and cable connection
Calibration with error	F calib. defect.	٤	Basic load	Stop	No	Metering continues in case of error with un-steady measured values	Check sensor, replace if necessary, recalibrate if necessary
Correction variable - Range infringement	Temp. input ↑ ↓	1	Basic load	Stop	Yes		Check sensor, transducer
- Value below minimum - Value above maximum		٤				at < 3.0 mA / -0.1 °C at >23 mA / +100.1 °C Value last valid is still used	and cable connection
Feed forward control mA - Value below minimum Multiplicative	Check feedfwd input	Μ	Stop		Yes	< 3.8 mA; feed forward control = 0%	Check sensor, transducer and cable connection
- Value above maximum	Check feedfwd input	٤			Yes	> 23 mA; feed forward control = 100% Value last valid is used	
Limit transgression after checkout time limit values Control "op"	Fluor. limit 1	1			Vpc	Function defetable	Define cause, reset values if necessary
Control "off"		mm	Stop or Basic load	Stop	Yes		
Servomotor Position not reached	Servomot. defect.	٤			Yes	Servomotor closes	Check servomotor
Electronics error	System defect.	Ж О	Stop	Stop	Yes	Elektronic data defective	Call in service

Faults / Notes / Troubleshooting

*depending on whether "Alarm on" or "Alarm off" set in "General settings"

Operation	Note text	Symbol	effect on metering on control		Alarm with ack- nowledgement	Remarks	Remedy
Pause contact (Pause)	Pause	03	Stop	Stop	No/Yes*	No further fault check	I
Pause contact (Pause/Hold)	Pause/Hold	03		Stop	No/Yes	No further fault check	I
Stop (via button)	Stop	\sim	Stop	Stop	No	Relay drops out	1
During calibration			Basic load	Stop	No	No error processing of measured variable	Ţ
	Potential low Potential high Slope low Slope high	Э	Basic load	Stop	No	< 100.0 mV > 150.0 mV < 45 mV/dec > 65 mV/dec	Check sensor, replace if necessary
	Value Fluoride unsteady				No	ΔU > 0.5 mV after t > 300 s	Check sensor, replace if necessary
During servomotor setting Position feed back wrong Upper position <40 % max. value Lower position >30 % range	Direction check Final value small Final value big					Without correct adjustment the last valid values are still used	Check connection of relay and potentiometer. Adjust the operation region of the servomotor correctly.