Identity code: D4a Pumps

D4a	Series D-pum Version	np Type 4												
	PH RH CA CB	pH: m Redox Chlori	Measured variable: pH: measuring range 0-14 pH Redox: measuring range 0-999 mV Chlorine: measuring range 0-5 ppm; control range 0-2 ppm Chlorine: Measuring range 0-20 ppm											
		1601 1201 0803 1002 0308 0215	Pun	np versio	on:									
			NP PP TT SS NS	Acrylic Polypr PTFE - 316 St Auto-c	Power s	n® O-ri vith EP rbon w eel with Acrylic upply:	DM O- ith PTF n PTFE with \	E seal seal /iton® sea	Viton® is a registered trademark of DuPont Dow Elastomers					
				A D	2 S 6 4	ensor on the control of the control	connectonnecto	nerican position: sensors r for chlo	rine sensor (CA/CB) ompensation for pH/RH					
	Correction variable: None Temperature (SN6) pH Control direction Raise measured Lower measured Control direction Control direction						one empera	s) pH rection: sured value						
							1 2	Noi 0/4	nal current output: ie 20 mA ≤ pH 1-12; 0-999 mV; 0-2 ppm (CA) 20 mA ≤ 0-20 ppm (CB) Relay:					
								0 A B C D E F	None Relay output, low tank level (pulls in) Relay output, pump pacing (pulls in) Relay output, pump stop (pulls in) Relay output, setpoint reached (pulls in) Control time monitoring (pulls in) Safety and power failure signaling relay (drops out)					
D 4a	PH	1601	PP	D	2 () 1	1 (0						

ProMinent®

Technical Data: D4a Pumps

D4a Pump	Maximum <u>Pressure</u>	Capacity at ma	x. mL/		Capacity at 1/2 m Backpressure	ax. mL/		Connections O.D. x I.D.
Version	psig (bar)	US GPH (L/h)	stroke	mL/min	US GPH (L/h)	stroke	mL/min	(inches)
1601	232 16	0.22 (0.84)	0.14	14.0	0.26 (0.99)	0.16	16.5	1/4 x 3/16
1201	174 12	0.38 (1.45)	0.24	24.2	0.42 (1.59)	0.26	26.5	1/4 x 3/16
0803	101 7	0.76 (2.86)	0.48	47.7	0.84 (3.17)	0.53	52.9	1/4 x 3/16
1002	145 10	0.50 (1.91)	0.32	31.8	0.58 (2.18)	0.36	36.3	1/2 x 3/8
0308	43.5 3	1.85 (7.00)	1.17	116.6	2.01 (7.60)	1.27	126.6	1/2 x 3/8
0215	22 1.5	3.25 (12.30)	2.05	205.0	3.49 (13.20)	2.20	220.0	1/2 x 3/8

D4a with NS liquid end

D4a NS			Capacity Back	at Maxi pressur			Max. Stroking	Connections	Su	ıction
Pump			U.S.		mL/	mL/	Rate	O.D. x I.D.	L	_ift
Version	psig	(bar)	GPH	(L/h)	stroke	min	spm	(inches)	ft.	(m)
1601	232	(16)	0.14	(0.54)	0.09	9	100	1/4 x 3/16	5.9	(1.8)
1201	174	(12)	0.22	(0.84)	0.14	14	100	1/4 x 3/16	6.6	(2.0)
0803	116	(8)	0.52	(1.98)	0.33	33	100	1/4 x 3/16	9.2	(2.8)
1002	145	(10)	0.40	(1.50)	0.25	25	100	1/4 x 3/16	6.6	(2.0)

Liquid end materials

Material Version	Liquid End	Suction and Discharge	Seals	Ball valves (1/4"-1/2" connection)
NP	Acrylic	PVC	Viton®	Ceramic
PP	Polypropylene	Polypropylene	EPDM	Ceramic
TT	PTFE	PTFE	PTFE	Ceramic
SS	316 Stainless Steel	316 Stainless Steel	PTFE	Ceramic
NS*	Acrylic	PVC	Viton®	Ceramic
*Auto dega	ssing liquid end			

Measured Variables:

- pH value (0 14 pH)
- Redox potential (0 999 mV)
- Chlorine concentration (0 5* ppm or 0 20 ppm) (*Control range is 0-2 ppm)

Features:

- Solenoid-driven metering pump and controller integration in a chemically-resistant plastic casing rated NEMA 4X (IP65)
- Connection for single-stage level switch to monitor chemical tank level
- Various liquid end material options (PP, NP, TT, SS)
- Easy operation with 6 position selector switches (manual/OFF/measure/setpoint display/automatic mode/ automatic mode with control time) and setting potentiometer for setpoint simulation
- 3-digit LC display
- LEDs to indicate metering, setpoint reached and alarm

Specifications: D4a Pumps

(see individual specifications for pH, RH and CA/CB)

Maximum stroke length: 0.05" (1.25 mm)

Materials of construction

Housing: Glass-filled Luranyltm (PPE)

Diaphragm: PTFE faced EPDM with steel core and Nylon reinforcement

Liquid end options: Polypropylene, Acrylic/PVC, PTFE, 316 SS

Enclosure rating: NEMA 4X (IP 65), transparent front cover standard

Insulation class: F

Check valves: Double ball

Repeatability of the metering: When used according to operating instructions, ±2%

Power cord: 6 ft. (2 m)

Ambient temperature range: 14°F (-10°C) to 113°F (45°C)

Max. fluid operating temperatures: Material Constant Short Term

 Acrylic/PVC
 113°F (45°C)
 140°F (60°C)

 Polypropylene
 122°F (50°C)
 212°F (100°C)

 PTFE
 122°F (50°C)
 248°F (120°C)

 316 SS
 122°F (50°C)
 248°F (120°C)

Average power drain at maximun stroking rate (Watts) / peak current

drain at pump stroke (Amps): 15 W average (any voltage or frequency) / 1.5 A

Service factor: 1.15 (Note: performance is the same on 50 or 60 Hz power)

Control method: Proportional (in manual mode, frequency adjustable from 0 to 100 spm by

potentiometer)

Read-out: 3-digit liquid crystal display of measured value, set value or simulated

measured value.

LED displays: Stroke indication, set value reached (no error)

Low tank level (functions with optional single-stage float switch)

Relay output (optional) Time check (optional)

Signal current output: 4-20 mA (internally changeable to 0-20 mA), burden 750 Ohm, proportional

to measured variable.

Connector, sensor input: Socket for SN6 plug, moisture protected to connect a combination probe

(pH/RH). Pin socket for optional solution ground (pH/RH). Terminal block for hard wiring optional PT 100 resistance thermometer for temperature compensation (pH). Moisture protected, 4-pole connector for CA/CB.

Maximum stroke rate: 100 strokes per minute

Relay output: Contact load: max. 250 VAC/3 A/1100 VA; min. 24 VDC/25 mA

Warranty: Two years on drive; one year on liquid end

Factory testing: Each pump is tested for rated flow and pressure