Capacity Data

Capacity Data Dosing Pumps

The following summary of the capacity data for the comprehensive ProMinent® dosing pump range facilitates pump selection based on a given back pressure (bar) and feed rate (l/h).

When selecting a pump type, please specify the co-ordinate of the back pressure (bar) and feed rate (I/h).

pk_0_001_5

Data Required For Specification Of Dosing Pump And Accessories

Pump	Spe	cific	catio	n D	ata
ишр	- - - - - - - - - -		<i>9</i>		

Min./max. required feed rate	l/h
Available power supply	V, Hz
Min./max. operating temperature	°C
Properties of process chemical	
Name, concentration %	
Solids content %	
Dynamic viscosity mPa (= cP)	
Vapour pressure at operating temperature	bar
Remarks, e.g. abrasive,	
gaseous, flammable,	
corrosive towards	
Suction conditions:	
Min./max. suction lift	m
Min./max. positive suction head	m
Pressure in chemical tank	bar
Suction line length	m
Suction line diameter	mm
Discharge conditions:	
Min./max. back pressure	bar
Min./max. discharge head	m
Min./max. negative discharge head	m
Discharge line length	m
Discharge line diameter	mm
Number of valves and fittings in suction and discharge line	
Data required for proportional dosing:	
Water flow Q min./max.	m ³ /h
Required final concentration	g/m³, ppm

Example:

A required dose in $mg/I = g/m^3 = ppm$ (Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter 5 l.

Process fluid = sodium hypochlorite solution Na OCI with 12 % chlorine (by weight) = 120 g/kg = 150 g/l = 150 mg/ml

Selected dosing pump GALa 1005 NPB2 with 0.41 ml/per stroke volume, at max. 10800 strokes/h.

Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput I/h: pulse spacing I/pulse = 50,000 I/h: 5 I/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (l/h) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{50,000 \text{ l x } 0.00041 \text{ l}}{\text{h x 5 l}} = 4.1 \text{ l/h}$$

Final dose =
$$\frac{\text{concentration (mg/ml) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg x } 0.41 \text{ ml}}{\text{ml x } 5 \text{ l}} = 12.3 \text{ mg/l}$$

= 12.3 g/m³
= 12.3 ppm chlorine Cl_2